Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex
نویسندگان
چکیده
Inputs from the two eyes are first combined in simple cells in the primary visual cortex. Consequently, visual cortical neurons need to have the flexibility to encode visual features under both monocular and binocular situations. Here we show that binocular orientation selectivity of mouse simple cells is nearly identical to monocular orientation selectivity in both anaesthetized and awake conditions. In vivo whole-cell recordings reveal that the binocular integration of membrane potential responses is sublinear. The sublinear integration keeps binocularly evoked depolarizations below threshold at non-preferred orientations, thus preserving orientation selectivity. Computational simulations based on measured synaptic conductances indicate that inhibition promotes sublinear binocular integration, which are further confirmed by experiments using genetic and pharmacological manipulations. Our findings therefore reveal a cellular mechanism for how visual system can switch effortlessly between monocular and binocular conditions. The same mechanism may apply to other sensory systems that also integrate multiple channels of inputs.
منابع مشابه
Binocular integration and disparity selectivity in mouse primary visual cortex.
Signals from the two eyes are first integrated in primary visual cortex (V1). In many mammals, this binocular integration is an important first step in the development of stereopsis, the perception of depth from disparity. Neurons in the binocular zone of mouse V1 receive inputs from both eyes, but it is unclear how that binocular information is integrated and whether this integration has a fun...
متن کاملDevelopment and matching of binocular orientation preference in mouse V1
Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction ...
متن کاملLocal Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons
Dissecting the functional roles of excitatory and inhibitory neurons in cortical circuits is a fundamental goal in neuroscience. Of particular interest are their roles in emergent cortical computations such as binocular integration in primary visual cortex (V1). We measured the binocular response selectivity of genetically defined subpopulations of excitatory and inhibitory neurons. Parvalbumin...
متن کاملMir-132/212 is required for maturation of binocular matching of orientation preference and depth perception
MicroRNAs (miRNAs) are known to mediate post-transcriptional gene regulation, but their role in postnatal brain development is still poorly explored. We show that the expression of many miRNAs is dramatically regulated during functional maturation of the mouse visual cortex with miR-132/212 family being one of the top upregulated miRNAs. Age-downregulated transcripts are significantly enriched ...
متن کاملBinocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
Experiences during the critical period sculpt the circuitry within the neocortex, leading to changes in the functional responses of sensory neurons. Monocular deprivation (MD) during the visual critical period causes shifts in ocular preference, or dominance, toward the open eye in primary visual cortex (V1) and disrupts the normal development of acuity. In carnivores and primates, MD also disr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013