Stochastic switching in delay-coupled oscillators.
نویسندگان
چکیده
A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a nondelayed Langevin equation, which allows us to analytically compute the distribution of frequencies and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators.
منابع مشابه
Stochastic phase resetting of two coupled phase oscillators stimulated at different times.
A model of two coupled phase oscillators is presented, where the oscillators are subject to random forces and are stimulated at different times. Transient phase dynamics, synchronization, and desynchronization, which are stimulus locked (i.e., tightly time locked to a repetitively administered stimulus), are investigated. Complex coordinated responses, in terms of a noise-induced switching acro...
متن کاملReviving oscillations in coupled nonlinear oscillators.
By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce...
متن کاملSynchronization in Networks of Coupled Harmonic Oscillators with Stochastic Perturbation and Time Delays
In this paper, we investigate synchronization of coupled second-order linear harmonic oscillators with random noises and time delays. The interaction topology is modeled by a weighted directed graph and the weights are perturbed by white noise. On the basis of stability theory of stochastic differential delay equations, algebraic graph theory and matrix theory, we show that the coupled harmonic...
متن کاملThe Exponential Stability of Neutral Stochastic Delay Partial Differential Equations
In this paper we analyse the almost sure exponential stability and ultimate boundedness of the solutions to a class of neutral stochastic semilinear partial delay differential equations. This kind of equations arises in problems related to coupled oscillators in a noisy environment, or in viscoeslastic materials under random or stochastic influences.
متن کاملSlow switching in globally coupled oscillators: robustness and occurrence through delayed coupling.
The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This characteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue that the same behavior can arise in a wider class of oscillator ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2014