Porous medium equation with absorption and a nonlinear boundary condition
نویسندگان
چکیده
In this paper we study a porous medium equation with a nonlinear absorption term and a nonlinear boundary condition. We prove existence of weak solutions and also we establish some uniqueness and non uniqueness results for certain range of the parameters that appear in the problem. Finally we deal with the existence of global solutions in time or blow-up. We find in which region of parameters this phenomena occurs.
منابع مشابه
Roles of Weight Functions to a Nonlocal Porous Medium Equation with Inner Absorption and Nonlocal Boundary Condition
and Applied Analysis 3 He studied the asymptotic behavior of solutions and found the influence of weight function on the existence of global and blow-up solutions. Wang et al. 10 studied porous medium equation with power form source term ut Δu u, x, t ∈ Ω × 0, ∞ , 1.8 subjected to nonlocal boundary condition 1.2 . By virtue of the method of upper-lower solutions, they obtained global existence,...
متن کاملGlobal Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method
A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...
متن کاملA nonlinear oblique derivative boundary value problem for the heat equation: Analogy with the porous medium equation
The problem under investigation is the heat equation in the upper half-plane, to which the di usion in the longitudinal direction has been suppressed, and augmented with a nonlinear oblique derivative condition. This paper proves global existence and qualitative properties to the Cauchy Problem for this model, furthering the study [18] of the self-similar solutions. The qualitative behaviour of...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کاملA NOVEL HOMOTOPY PERTURBATION METHOD: KOUROSH´S METHOD FOR A THERMAL BOUNDARY LAYER IN A SATURATED POROUS MEDIUM
this paper a novel homotopy perturbation method has been presented for forced convection boundary layer problems in a porous medium. Noting the infinite condition, a homotopy form which is similar to the singular perturbation form has been considered. The inner and outer solutions have been achieved and the coincidence of the results has been investigated with a proper matching method. The resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001