Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks.

نویسندگان

  • Pavel V Belichenko
  • Elena E Wright
  • Nadia P Belichenko
  • Eliezer Masliah
  • Hong Hua Li
  • William C Mobley
  • Uta Francke
چکیده

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene MECP2. Girls with RTT show dramatic changes in brain function, but relatively few studies have explored the structure of neural circuits. Examining two mouse models of RTT (Mecp2B and Mecp2J), we previously documented changes in brain anatomy. Herein, we use confocal microscopy to study the effects of MeCP2 deficiency on the morphology of dendrites and axons in the fascia dentata (FD), CA1 area of hippocampus, and motor cortex following Lucifer yellow microinjection or carbocyanine dye tracing. At 3 weeks of age, most (33 of 41) morphological parameters were significantly altered in Mecp2B mice; fewer (23 of 39) were abnormal in Mecp2J mice. There were striking changes in the density and size of the dendritic spines and density and orientation of axons. In Mecp2B mice, dendritic spine density was decreased in the FD (approximately 11%), CA1 (14-22%), and motor cortex (approximately 16%). A decreased spine head size (approximately 9%) and an increased spine neck length (approximately 12%) were found in Mecp2B FD. In addition, axons in the motor cortex were disorganized. In Mecp2J mice, spine density was significantly decreased in CA1 (14-26%). In both models, dendritic swelling and elongated spine necks were seen in all areas studied. Marked variation in the type and extent of changes was noted in dendrites of adjacent neurons. Electron microscopy confirmed abnormalities in dendrites and axons and showed abnormal mitochondria. Our findings document widespread abnormalities of dendrites and axons that recapitulate those seen in RTT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal morphology in MeCP2 mouse models is intrinsically variable and depends on age, cell type, and Mecp2 mutation.

Rett Syndrome (RTT), a progressive neurological disorder characterized by developmental regression and loss of motor and language skills, is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2). Neurostructural phenotypes including decreased neuronal size, dendritic complexity, and spine density have been reported in postmortem RTT brain tissue and in Mecp2 ani...

متن کامل

Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation.

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene MECP2, encoding methyl-CpG-binding protein 2 (MeCP2). Few studies have explored dendritic morphology phenotypes in mouse models of RTT and none have determined whether these phenotypes in affected females are cell autonomous or nonautonomous. Using confocal microscopy analysis we have examined the str...

متن کامل

Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome.

Rett syndrome (RTT) is caused by mutations in the X-linked gene MECP2. While patients with RTT show widespread changes in brain function, relatively few studies document changes in brain structure and none examine in detail whether mutations causing more severe clinical phenotypes are linked to more marked changes in brain structure. To study the influence of MeCP2-deficiency on the morphology ...

متن کامل

MeCP2 Mutation Results in Compartment-Specific Reductions in Dendritic Branching and Spine Density in Layer 5 Motor Cortical Neurons of YFP-H Mice

Rett Syndrome (RTT) is a neurodevelopmental disorder predominantly caused by mutations in the X-linked gene MECP2. A primary feature of the syndrome is the impaired maturation and maintenance of excitatory synapses in the central nervous system (CNS). Different RTT mouse models have shown that particular Mecp2 mutations have highly variable effects on neuronal architecture. Distinguishing MeCP2...

متن کامل

Dendritic spine dysgenesis in Rett syndrome

Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 514 3  شماره 

صفحات  -

تاریخ انتشار 2009