Human CD36 overexpression in renal tubules accelerates the progression of renal diseases in a mouse model of folic acid-induced acute kidney injury
نویسندگان
چکیده
Background Acute kidney injury (AKI) is a risk factor for progression to chronic kidney disease, with even subclinical AKI episodes progressing to chronic kidney disease. Several risk factors such as preexisting kidney disease, hyperglycemia, and hypertension may aggravate renal disease after AKI. However, mechanisms underlying the progression of AKI are still unclear. This study identified the effect of human cluster of differentiation 36 (CD36) overexpression on the progression of folic acid-induced AKI. Methods Pax8-rtTA/tetracycline response element-human CD36 transgenic mice were used to elucidate the effect of human CD36 overexpression in the proximal tubules on folic acid-induced AKI. Results Results of histological analysis showed severely dilated tubules with casts and albuminuria in folic acid-treated transgenic mice overexpressing human CD36 compared with folic acid-treated wild-type mice. In addition, analysis of mRNA expression showed a significant increase in the collagen 3a1 gene in folic acid-treated transgenic mice overexpressing human CD 36 compared with folic acid-treated wild type mice. Conclusion Human CD36-overexpressing transgenic mice showed severe pathological changes and albuminuria compared with wild-type mice. Moreover, mRNA expression of the collagen 3a1 gene increased in folic acid-treated transgenic mice. These results suggest that human CD36 overexpression is a risk factor of AKI and its progression to chronic kidney disease.
منابع مشابه
Tanshinone IIA Attenuates Renal Fibrosis after Acute Kidney Injury in a Mouse Model through Inhibition of Fibrocytes Recruitment
Acute kidney injury (AKI) is associated with an increased risk of developing advanced chronic kidney disease (CKD). Yet, effective interventions to prevent this conversion are unavailable for clinical practice. In this study, we examined the beneficial effects of Tanshinone IIA on renal fibrosis in a mouse model of folic acid induced AKI. We found that Tanshinone IIA treatment significantly att...
متن کاملIncreased renal angiopoietin-1 expression in folic acid-induced nephrotoxicity in mice.
Growth factors affect epithelial regeneration after acute renal injury, but less is known regarding the expression of vascular growth factors in this setting. A mouse model of folic acid (FA)-induced nephrotoxicity was used to study the expression of angiopoietins (Ang), factors that bind the Tie-2 receptor and modulate endothelial growth. Tubular damage was detected 1 d after FA administration...
متن کاملProtective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats
sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...
متن کاملThe effect of adipose-derived mesenchymal stem cells on renal function and histopathology in a rat model of ischemia-reperfusion induced acute kidney injury
Objective(s): It has been shown that adipose-derived mesenchymal stem cells (AD-MSC) have protective effects in acute kidney injury (AKI). This study was conducted to assess the therapeutic effects of AD-MSC in rats subjected to acute kidney injury by 45 min of renal ischemia followed by 48 hr of reperfusion (I/R). Materials and Methods:...
متن کاملIL-36α Regulates Tubulointerstitial Inflammation in the Mouse Kidney
IL-36α, a member of the IL-1 family, is a crucial mediator of inflammatory responses. We previously found that IL-36α was overexpressed in injured distal tubules (DTs); however, its pathological function remains unclear. Herein, unilateral ureter obstruction (UUO) or folic acid (FA) injection was performed in mouse kidneys to assess the role of IL-36α in kidney injury. IL-36α mRNA and protein e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 37 شماره
صفحات -
تاریخ انتشار 2018