Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High‐Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material

نویسندگان

  • Biwei Xiao
  • Jian Liu
  • Qian Sun
  • Biqiong Wang
  • Mohammad Norouzi Banis
  • Dong Zhao
  • Zhiqiang Wang
  • Ruying Li
  • Xiaoyu Cui
  • Tsun‐Kong Sham
  • Xueliang Sun
چکیده

Ultrathin amorphous FePO4 coating derived by atomic layer deposition (ALD) is used to coat the 5 V LiNi0.5Mn1.5O4 cathode material powders, which dramatically increases the capacity retention of LiNi0.5Mn1.5O4. It is believed that the amorphous FePO4 layer could act as a lithium-ions reservoir and electrochemically active buffer layer during the charge/discharge cycling, helping achieve high capacities in LiNi0.5Mn1.5O4, especially at high current densities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrathin surface modification by atomic layer deposition on high voltage cathode LiNi0.5Mn1.5O4 for lithium ion batteries

Atomic layer deposition (ALD) has been employed to modify the surface of high voltage cathode LiNi0.5Mn1.5O4 by coating ultrathin Al2O3 layer on the electrodes. The ultrathin layer of Al2O3 can suppress the undesirable reactions during cycling, while maintaining the electron and ion conductivity of the electrode. The ALD Al2O3 coated LiNi0.5Mn1.5O4 showed remarkable improvement over bare LiNi0....

متن کامل

Effect of Surface Modification on Nano-Structured LiNi(0.5)Mn(1.5)O4 Spinel Materials.

Fine-tuning of particle size and morphology has been shown to result in differential material performance in the area of secondary lithium-ion batteries. For instance, reduction of particle size to the nanoregime typically leads to better transport of electrochemically active species by increasing the amount of reaction sites as a result of higher electrode surface area. The spinel-phase oxide ...

متن کامل

Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4-δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4-δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissol...

متن کامل

Deposition of Al/Cu Multilayer By Double Targets Cylindrical DC Magnetron Sputtering System

A cylindrical direct current magnetron sputtering coater with two targets for deposition of multilayer thin films and cermet solar selective surfaces has been constructed. The substrate holder was able to rotate around the target for obtaining the uniform layer and separated multilayer phases. The Al/ Cu multilayer film was deposited on the glass substrate at the following conditions: Working g...

متن کامل

Kinetically controlled formation of uniform FePO4 shells and their potential for use in high-performance sodium ion batteries

Amorphous iron phosphates are potential cathode materials for sodium ion batteries. The amorphous FePO4 matrix is able to insert/extract sodium ions reversibly without apparent structural degradation, resulting in stable performance during the charge/discharge process. However, the extremely low electronic conductivity of FePO4 itself becomes a formidable obstacle for its application as a high-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015