Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil

ثبت نشده
چکیده

Soil moisture affects microbial decay of SOM and rhizosphere respiration (RR) in temperate forest soils, but isolating the response of soil respiration (SR) to summer drought and subsequent wetting is difficult because moisture changes are often confounded with temperature variation. We distinguished between temperature and moisture effects by simulation of prolonged soil droughts in a mixed deciduous forest at the Harvard Forest, Massachusetts. Roofs constructed over triplicate 5 5 m plots excluded throughfall water during the summers of 2001 (168 mm) and 2002 (344 mm), while adjacent control plots received ambient throughfall and the same natural temperature regime. In 2003, throughfall was not excluded to assess the response of SR under natural weather conditions after two prolonged summer droughts. Throughfall exclusion significantly decreased mean SR rate by 53 mg C m 2 h 1 over 84 days in 2001, and by 68 mg C m 2 h 1 over 126 days in 2002, representing 10–30% of annual SR in this forest and 35–75% of annual net ecosystem exchange (NEE) of C. The differences in SR were best explained by differences in gravimetric water content in the Oi horizon (r5 0.69) and the Oe/Oa horizon (r5 0.60). Volumetric water content of the A horizon was not significantly affected by throughfall exclusion. The radiocarbon signature of soil CO2 efflux and of CO2 respired during incubations of O horizon, A horizon and living roots allowed partitioning of SR into contributions from young C substrate (including RR) and from decomposition of older SOM. RR (root respiration and microbial respiration of young substrates in the rhizosphere) made up 43–71% of the total C respired in the control plots and 41–80% in the exclusion plots, and tended to increase with drought. An exception to this trend was an interesting increase in CO2 efflux of radiocarbon-rich substrates during a period of abundant growth of mushrooms. Our results suggest that prolonged summer droughts decrease primarily heterotrophic respiration in the O horizon, which could cause increases in the storage of soil organic carbon in this forest. However, the C stored during two summers of simulated drought was only partly released as increased respiration during the following summer of natural throughfall. We do not know if this soil C sink during drought is transient or long lasting. In any case, differential decomposition of the O horizon caused by interannual variation of precipitation probably contributes significantly to observed interannual variation of NEE in temperate forests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil respiration under climate change: prolonged summer drought offsets soil warming effects

Climate change may considerably impact the carbon (C) dynamics and C stocks of forest soils. To assess the combined effects of warming and reduced precipitation on soil CO2 efflux, we conducted a two-way factorial manipulation experiment (4 °C soil warming + throughfall exclusion) in a temperate spruce forest from 2008 until 2010. Soil was warmed by heating cables throughout the growing seasons...

متن کامل

Contribution of carbonate weathering to the CO2 efflux from temperate forest soils

Temperate forests provide favorable conditions for carbonate bedrock weathering as the soil CO2 partial pressure is high and soil water is regularly available. As a result of weathering, abiotic CO2 can be released and contribute to the soil CO2 efflux. We used the distinct isotopic signature of the abiotic CO2 to estimate its contribution to the total soil CO2 efflux. Soil cores were sampled f...

متن کامل

Age of Soil Organic Matter and Soil Respiration: Radiocarbon Constraints on Belowground C Dynamics

Radiocarbon data from soil organic matter and soil respiration provide powerful constraints for determining carbon dynamics and thereby the magnitude and timing of soil carbon response to global change. In this paper, data from three sites representing well-drained soils in boreal, temperate, and tropical forests are used to illustrate the methods for using radiocarbon to determine the turnover...

متن کامل

Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On mont...

متن کامل

Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest – no indications for thermal adaptations

Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006