The logarithmic HLS inequality for systems on compact manifolds

نویسندگان

  • Itai Shafrir
  • Gershon Wolansky
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Proof on the Non-existence of Shrinking Breathers for the Ricci Flow

Suppose M is a compact n-dimensional manifold, n ≥ 2, with a metric gij(x, t) that evolves by the Ricci flow ∂tgij = −2Rij in M × (0, T ). We will give a simple proof of a recent result of Perelman on the non-existence of shrinking breather without using the logarithmic Sobolev inequality. It is known that Ricci flow is a very powerful tool in understanding the geometry and structure of manifol...

متن کامل

Spherical Reflection Positivity and the Hardy-littlewood-sobolev Inequality

The well-known functions on R , f(x) = c(b + |x − a|2)−p, where a ∈ R , b > 0 and c > 0, appear as the optimizers in some classical functional inequalities, notably the Hardy-Littlewood-Sobolev (HLS) inequality and its dual, the Sobolev inequality. Given their ubiquity, these functions must be endowed with some special property, and this was identified by Y. Y. Li and M. J. Zhu [21]. It is the ...

متن کامل

Keller-Segel, Fast-Diffusion and Functional Inequalities

We will show how the critical mass classical Keller-Segel system and the critical displacement convex fast-diffusion equation in two dimensions are related. On one hand, the critical fast diffusion entropy functional helps to show global existence around equilibrium states of the critical mass Keller-Segel system. On the other hand, the critical fast diffusion flow allows to show functional ine...

متن کامل

Pseudolocality for the Ricci Flow and Applications

In [26], Perelman established a differential Li-YauHamilton (LYH) type inequality for fundamental solutions of the conjugate heat equation corresponding to the Ricci flow on compact manifolds (also see [23]). As an application of the LYH inequality, Perelman proved a pseudolocality result for the Ricci flow on compact manifolds. In this article we provide the details for the proofs of these res...

متن کامل

Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds

If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of  graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005