Evaluating Azumaya algebras on cubic surfaces

نویسنده

  • Martin Bright
چکیده

Let X be a cubic surface over a local number field k. Given an Azumaya algebra on X, we describe the local evaluation map X(k)→ Q/Z in two cases, showing a sharp dependence on the geometry of the reduction of X. This extends results of Colliot-Thélène, Kanevsky and Sansuc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

There Are Enough Azumaya Algebras on Surfaces

Using Maruyama’s theory of elementary transformations, I show that the Brauer group surjects onto the cohomological Brauer group for separated geometrically normal algebraic surfaces. As an application, I infer the existence of nonfree vector bundles on proper normal algebraic surfaces.

متن کامل

Blt Azumaya Algebras and Moduli of Maximal Orders

We study moduli spaces of maximal orders in a ramified division algebra over the function field of a smooth projective surface. As in the case of moduli of stable commutative surfaces, we show that there is a Kollár-type condition giving a better moduli problem with the same geometric points: the stack of blt Azumaya algebras. One virtue of this refined moduli problem is that it admits a compac...

متن کامل

Azumaya Monads and Comonads

The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...

متن کامل

Quasi-elementary H-Azumaya Algebras Arising from Generalized (Anti) Yetter-Drinfeld Modules

Let H be a Hopf algebra with bijective antipode, α, β ∈ AutHopf (H) and M a finite dimensional (α, β)-Yetter-Drinfeld module. We prove that End(M) endowed with certain structures becomes an H-Azumaya algebra, and the set of H-Azumaya algebras of this type is a subgroup of BQ(k,H), the Brauer group of H .

متن کامل

The Differential Azumaya Algebras and Non-commutative Picard–Vessiot Cocycles

A differential Azumaya algebra, and in particular a differential matrix algebra, over a differential field K with constants C is trivialized by a Picard–Vessiot (differential Galois) extension E. This yields a bijection between isomorphism classes of differential algebras and Picard–Vessiot cocycles Z(G(E/K), PGLn(C)) which cobound in Z (G(E/K), PGLn(E)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009