Gene Regulatory Network Discovery from Time-Series Gene Expression Data - A Computational Intelligence Approach
نویسندگان
چکیده
The interplay of interactions between DNA, RNA and proteins leads to genetic regulatory networks (GRN) and in turn controls the gene regulation. Directly or indirectly in a cell such molecules either interact in a positive or in repressive manner therefore it is hard to obtain the accurate computational models through which the final state of a cell can be predicted with certain accuracy. This paper describes biological behaviour of actual regulatory systems and we propose a novel method for GRN discovery of a large number of genes from multiple time series gene expression observations over small and irregular time intervals. The method integrates a genetic algorithm (GA) to select a small number of genes and a Kalman filter to derive the GRN of these genes. After GRNs of smaller number of genes are obtained, these GRNs may be integrated in order to create the GRN of a larger group of genes of interest.
منابع مشابه
Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach
Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...
متن کاملA new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
MOTIVATION Signaling pathways are dynamic events that take place over a given period of time. In order to identify these pathways, expression data over time are required. Dynamic Bayesian network (DBN) is an important approach for predicting the gene regulatory networks from time course expression data. However, two fundamental problems greatly reduce the effectiveness of current DBN methods. T...
متن کاملIdentification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis
Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملMultivariate Feature Extraction for Prediction of Future Gene Expression Profile
Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004