Landmark Paper Reprise – Stochastic Approximation for Monte Carlo Optimization
نویسندگان
چکیده
In In this paper, we introduce two convergent Monte Carlo algorithms for optimizing complex stochastic systems. The first algorithm, which is applicable to to regenerative processes, operates by estimating finite differences. The second method is of Robbins-Monro type and is applicable to to Markov chains. The algorithm is driven by derivative estimates obtained via a likelihood ratio argument. 1.
منابع مشابه
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that...
متن کاملStochastic Programming by Monte Carlo Simulation Methods
We consider in this paper stochastic programming problems which can be formulated as an optimization problem of an expected value function subject to deterministic constraints. We discuss a Monte Carlo simulation approach based on sample average approximations to a numerical solution of such problems. In particular, we give a survey of a statistical inference of the sample average estimators of...
متن کاملOPTIMISATION OF PARTICLE FILTERS USING SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION tBao
This paper addresses the optimisation of particle filtering methods aka Sequential Monte Carlo (SMC) methods using stochastic approximation. First, the SMC algorithm is parameterised smoothly by a parameter. Second, optimisation of an average cost function is performed using Simultaneous Perturbation Stochastic Approximation (SPSA). Simulations demonstrate the efficiency of our algorithm.
متن کاملOptimisation of particle filters using simultaneous perturbation stochastic approximation
This paper addresses the optimisation of particle filtering methods aka Sequential Monte Carlo (SMC) methods using stochastic approximation. First, the SMC algorithm is parameterised smoothly by a parameter. Second, optimisation of an average cost function is performed using Simultaneous Perturbation Stochastic Approximation (SPSA). Simulations demonstrate the efficiency of our algorithm.
متن کاملApproximation of Stochastic Programming Problems
In Stochastic Programming, the aim is often the optimization of a criterion function that can be written as an integral or mean functional with respect to a probability measure P. When this functional cannot be computed in closed form, it is customary to approximate it through an empirical mean functional based on a random Monte Carlo sample. Several improved methods have been proposed, using q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007