Different mechanisms of cell polarisation in vegetative and shmooing growth in fission yeast.
نویسندگان
چکیده
Schizosaccharomyces pombe cells have two polarised growth modes: an intrinsic vegetative growth mode, determined by an internal positioning mechanism and an extrinsic shmooing growth mode, activated by external pheromone. We have analysed the role of the cell end marker Tea1p, the CLIP170 like protein Tip1p, the kinesin like protein Tea2p and the Dyrk-like kinase Pom1p, during the switch between the two growth patterns, with the intention of studying the switch away from the vegetative growth mode. In vegetative growth these morphological factors are concentrated at cell ends, whereas during shmooing growth they are delocalised from the cell ends. In the absence of Tea1p, Tip1p and Tea2p, vegetative cells display microtubule and cell polarisation defects, but shmooing cells are indistinguishable from wild-type and shmoo more readily. These results suggest that Tea1p, Tip1p and Tea2p are not required for polarised growth during shmooing, but form part of the intrinsic vegetative growth mode that needs to be dismantled before cells can generate an extrinsic growth patterns. In contrast, Pom1p appears to have a role in the initial stages of the switch to the shmooing growth mode.
منابع مشابه
The p150-Glued Ssm4p regulates microtubular dynamics and nuclear movement in fission yeast.
During vegetative growth of the fission yeast Schizosaccharomyces pombe, microtubules nucleate from multiple microtubule organising centres (MTOCs) close to the nucleus, polymerising until they reach the end of the cell and then shrinking back to the cell centre. In response to mating pheromone, S. pombe undergoes a morphological switch from a vegetative to a shmooing growth pattern. The switch...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملA multiplex culture system for the long‐term growth of fission yeast cells
Maintenance of long-term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for c...
متن کاملCharacteristics of Different Brewerâs Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars
Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 115 Pt 8 شماره
صفحات -
تاریخ انتشار 2002