Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

نویسندگان

  • Fernando Locatelli
  • Gesine Bundrock
  • Uli Müller
چکیده

In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief Communication Focal and Temporal Release of Glutamate in the Mushroom Bodies Improves Olfactory Memory in Apis mellifera

In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally define...

متن کامل

Neonicotinoid-induced impairment of odour coding in the honeybee

Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonico...

متن کامل

Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.)

Imidacloprid is a chloronicotinyl insecticide which interacts with insect nicotinic acetylcholine receptors. Thirty minutes after oral treatment of honeybees with imidacloprid, the olfactory learning performances in a proboscis extension reflex (PER) procedure were impaired. In parallel, an increase of the cytochrome oxidase labelling was found into the calyces of the mushroom bodies. Imidaclop...

متن کامل

The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee (Apis mellifera) Brain

This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom bod...

متن کامل

Depolymerization of actin facilitates memory formation in an insect.

In mammals, memory formation and stabilization requires polymerization of actin. Here, we show that, in the honeybee, inhibition of actin polymerization within the brain centres involved in memory formation, the mushroom bodies (MBs), enhances associative olfactory memory. Local application of inhibitors of actin polymerization (Cytochalasin D or Latrunculin A) to the MBs 1 h before induction o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 50  شماره 

صفحات  -

تاریخ انتشار 2005