A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis.
نویسندگان
چکیده
A 52 kd cellular protein, FK506-binding protein (FKBP52), phosphorylated at tyrosine residues by epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK), inhibits adeno-associated virus 2 (AAV2) second-strand DNA synthesis and transgene expression. FKBP52 is dephosphorylated at tyrosine residues by T-cell protein tyrosine phosphatase (TC-PTP), and TC-PTP over-expression leads to improved viral second-strand DNA synthesis and improved transgene expression. In these studies, we observed that perturbation of EGFR-PTK signaling by a specific inhibitor, Tyrphostin 23 (Tyr23), augmented the transduction efficiency of the single-stranded AAV (ssAAV) vector as well as the self-complementary AAV (scAAV) vector. Similarly, tyrosine-dephosphorylation of FKBP52 by TC-PTP resulted in increased transduction by both vectors. These data suggested that EGFR-PTK signaling also affects aspects of AAV transduction other than viral second-strand DNA synthesis. We document that inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsids which, in turn, facilitates nuclear transport by limiting proteasome-mediated degradation of AAV vectors. We also document that Tyr23-mediated increase in AAV2 transduction efficiency is not further enhanced by a specific proteasome inhibitor, MG132. Thus, EGFR-PTK signaling modulates ubiquitin (Ub)/proteasome pathway-mediated intracellular trafficking as well as FKBP52-mediated second-strand DNA synthesis of AAV2 vectors. This has implications in the optimal use of AAV vectors in gene therapy.
منابع مشابه
Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression.
We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiti...
متن کاملNext generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses.
Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have re...
متن کاملHigh Throughput Screening for the Enhancement of Adeno-Associated Virus Type 2 Transduction
Adeno-associated virus (AAV) is a promising vector for human gene therapy. Although more effective than non-viral vectors, AAV still requires improvement in efficacy in order to become a successful gene therapy vector. With this in mind, we have sought to identify and examine identified enhancers of adeno-associated virus type 2 (AAV2) transduction. Using a high throughput screening system with...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular therapy : the journal of the American Society of Gene Therapy
دوره 15 7 شماره
صفحات -
تاریخ انتشار 2007