Universal Bound on the Performanceof Lattice
نویسندگان
چکیده
We present a lower bound on the probability of symbol error for maximum-likelihood decoding of lattices and lattice codes on a Gaussian channel. The bound is tight for error probabilities and signal-to-noise ratios of practical interest, as opposed to most existing bounds that become tight asymptotically for high signal-to-noise ratios. The bound is also universal: it provides a limit on the highest possible coding gain that may be achieved, at speciic symbol error probabilities, using any lattice or lattice code in n-dimensions. In particular, it is shown that the eeective coding gains of the densest known lattices are much lower than their nominal coding gains, at practical symbol error rates of 10 ?5 to 10 ?7. The asymptotic (as n ! 1) behavior of the new bound is shown to coincide with the Shannon limit for Gaussian channels.
منابع مشابه
On residuated lattices with universal quantifiers
We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...
متن کاملA degree bound for the Graver basis of non-saturated lattices
Let $L$ be a lattice in $ZZ^n$ of dimension $m$. We prove that there exist integer constants $D$ and $M$ which are basis-independent such that the total degree of any Graver element of $L$ is not greater than $m(n-m+1)MD$. The case $M=1$ occurs precisely when $L$ is saturated, and in this case the bound is a reformulation of a well-known bound given by several authors. As a corollary, we show t...
متن کاملبهبود کران بالا روی بعد همدیس میدانهای اولیه
Modular invarinat, constraints the spectrum of the theory. Using the medum temprature expansion, for first and third order of derivative, a universal upper bound on the lowest primary field has been obtained in recent researches. In this paper, we will improve the upper bound on the scaling dimension of the lowest primary field. We use by the medium temprature expansion for an arbitrary orders...
متن کاملUniversal Bound on the Performance of Lattice Codes
We present a lower bound on the probability of symbol error for maximum-likelihood decoding of lattices and lattice codes on a Gaussian channel. The bound is tight for error probabilities and signal-to-noise ratios of practical interest, as opposed to most existing bounds that become tight asymptotically for high signal-to-noise ratios. The bound is also universal; it provides a limit on the hi...
متن کاملOn universal quantization by randomized uniform/lattice quantizers
Uniform quantization with dither, or lattice quantization with dither in the vector case, followed by a universal lossless source encoder (entropy coder), is a simple procedure for universal coding with distortion of a source that may take continuously many values. The rate of this universal coding scheme is examined, and we derive a general expression for it. An upper bound for the redundancy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996