Compressed Sensing Method Application in Image Denoising

نویسنده

  • Zhang Shunli
چکیده

In order to improve the work of a single path network reliability failure case, this chapter put forward a set of a single backup path algorithm based on the path. In this algorithm, using two disjoint paths as work path to transmit data, and USES the path does not intersect with the job of a set the path as the backup path. Then, this algorithm, is proposed based on a single a single backup path algorithm of shortest path set to ensure data under the case of the second work path of effective transmission. Theoretical derivation and numerical simulation results show that in a single work path failure cases, and the calculation of DMP compared to BP algorithm, this scheme can greatly improve network reliability, and save the network resources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Sensing for High-Spatiotemporal Functional Magnetic Resonance Imaging and Its Application of Exploiting Sparsity for Image Denoising

In this project, we apply compressed sensing (CS) technique to achieve high-spatiotemporal functional magnetic resonance imaging (MRI), which is very challenging with conventional approaches due to physical limitations such as slew rate. We also use its ideas of exploiting sparsity for image denoising. Keywords—compressed sensing; MRI; sparsity; image denoising

متن کامل

Robust reconstruction algorithm for compressed sensing in Gaussian noise environment using orthogonal matching pursuit with partially known support and random subsampling

The compressed signal in compressed sensing (CS) may be corrupted by noise during transmission. The effect of Gaussian noise can be reduced by averaging, hence a robust reconstruction method using compressed signal ensemble from one compressed signal is proposed. The compressed signal is subsampled for L times to create the ensemble of L compressed signals. Orthogonal matching pursuit with part...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Extending SAR Image Despckling methods for ViSAR Denoising

Synthetic Aperture Radar (SAR) is widely used in different weather conditions for various applications such as mapping, remote sensing, urban, civil and military monitoring. Recently, a new radar sensor called Video SAR (ViSAR) has been developed to capture sequential frames from moving objects for environmental monitoring applications. Same as SAR images, the major problem of ViSAR is the pres...

متن کامل

Image Reconstruction for Denoising Based on Compressive Sensing

Due to the disadvantage of large amounts of data computation and image quality degradation of classical reconstruction algorithm, a novel adaptive method of image reconstruction denoising based on compressive sensing is proposed. Firstly, the wavelet approximate coefficients and detail coefficients from the image noise are Gaussian distribution, and have different variances in different levels....

متن کامل

A Novel Sensing Noise and Gaussian Noise Removal Methods via Sparse Representation Using Svd and Compressive Sensing Methods

Image processing is one of the common research areas in recent decades, since noisy images cause harmful consequence on several applications and considerably degrade visual quality. The term denoising indicates to the method of estimating the unidentified (original) signal from available noisy data. Hyperspectral imaging has been established that it has several applications in farming, diagnost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015