Indexed Bit Map (IBM) for Mining Frequent Sequences

نویسندگان

  • Lionel Savary
  • Karine Zeitouni
چکیده

Sequential pattern mining has been an emerging problem in data mining. In this paper, we propose a new algorithm for mining frequent sequences. It processes only one scan of the database thanks to an indexed structure associated to a bit map representation. Thus, it allows a fast data access and a compact storage in main memory. This algorithm has been applied to activity sequences belonging to a population time-use survey. The experimental results show the efficiency of our method compared to existing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Sequence Mining to Multidimensional Sequence Mining

Sequential pattern mining has been broadly studied and many algorithms have been proposed. The first part of this chapter proposes a new algorithm for mining frequent sequences. This algorithm processes only one scan of the database thanks to an indexed structure associated to a bit map representation. Thus, it allows a fast data access and a compact storage in main memory. Experiments have bee...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

An Efficient Data Mining Technique for Discovering Interesting Sequential Patterns

Mining sequential patterns is to discover sequential purchasing behaviors of most customers from a large amount of customer transactions. In this paper, a data mining language is presented. From the data mining language, users can specify the interested items and the criteria of the sequential patterns to be discovered. Also, an efficient data mining technique is proposed to extract the sequent...

متن کامل

Ramp: High Performance Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for small dense datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. We also present a new frequent itemset mining algorithm Ramp (Real Algorithm...

متن کامل

Ramp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005