Efficient knowledge-based optimization of expensive computational models using adaptive response correction
نویسندگان
چکیده
Computer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical optimization techniques. In particular, direct optimization of simulation models, typically, requires a large number of model evaluations, which may be impractical or even infeasible in a reasonable timeframe. Possibly the most promising approach to alleviate this difficulty is surrogate-based optimization (SBO), where direct optimization of expensive models is replaced by an iterative enhancement and re-optimization of fast surrogate models. While a large variety of surrogate modeling and optimization are available, the methods exploiting the so-called physics-based surrogates seem to be the most efficient ones because the knowledge about the system of interest embedded in the underlying (often simulation-based) low-fidelity model ensures good generalization of the surrogate and a rapid convergence of the SBO algorithm. In this paper, we review a specific technique of this class, that is, the adaptive response correction (ARC). We discuss the formulation of the method, its limitations and generalizations, as well as illustrate its application for solving problems in various areas, including microwave engineering, antenna design, and aerodynamic shape optimization. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Knowledge-Based Response Correction and Adaptive Design Specifications for Microwave Design Optimization
Simulation-based optimization has become an important design tool in microwave engineering. Yet, employing electromagnetic (EM) solvers in the design process is a challenging task, primarily due to a high-computational cost of an accurate EM simulation. This paper is focused on efficient EM-driven design optimization techniques that utilize physically-based low-fidelity models, normally based o...
متن کاملAirfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...
متن کاملA new approach to determine efficient DMUs in DEA models using inverse optimization
This paper proposes a new approach for determining efficient DMUs in DEA models using inverse optimi-zation and without solving any LPs. It is shown that how a two-phase algorithm can be applied to detect effi-cient DMUs. It is important to compare computational performance of solving the simultaneous linear equa-tions with that of the LP, when computational issues and complexity analysis are a...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Science
دوره 11 شماره
صفحات -
تاریخ انتشار 2015