Elements of Class Groups and Shafarevich-tate Groups of Elliptic Curves
نویسندگان
چکیده
The problem of estimating the number of imaginary quadratic fields whose ideal class group has an element of order ` ≥ 2 is classical in number theory. Analogous questions for quadratic twists of elliptic curves have been the focus of recent interest. Whereas works of Stewart and Top [St-T], and of Gouvêa and Mazur [G-M] address the nontriviality of MordellWeil groups, less is known about the nontriviality of Shafarevich-Tate groups. Here we obtain a new type of result for the nontriviality of class groups of imaginary quadratic fields using the “circle method”, and then we combine it with works of Frey, Kolyvagin and the second author to obtain results on the nontriviality of Shafarevich-Tate groups of certain elliptic curves. For E = X0(11), these results imply that # ̆ −X < D < 0 : D fundamental and X(E(D), Q)[5] 6= {0} ̄ X3/5 log X .
منابع مشابه
On the Tate-shafarevich Groups of Certain Elliptic Curves
The Tate-Shafarevich groups of certain elliptic curves over Fq(t) are related, via étale cohomology, to the group of points of an elliptic curve with complex multiplication. The Cassels-Tate pairing is computed under this identification.
متن کاملVisualizing elements of order three in the Shafarevich-Tate group
1. Introduction. If we wish to write the equations of curves of genus 1 that give elements of the Shafarevich-Tate group of an elliptic curve over a number field K, a choice of ways is open to us. For example, if the element in question is of order 3 the curve of genus 1 corresponding to it occurs as a smooth plane cubic curve over K. In a recent article [C-M] we raised the question of when one...
متن کاملOn the Tate-shafarevich Group of a Number Field
For an elliptic curve E defined over a fieldK, the Tate-Shafarevich group X(E/K) encodes important arithmetic and geometric information. An important conjecture of Tate and Shafarevich states X(E/K) is always finite. Supporting this conjecture is a cohomological analogy between Mordell-Weil groups of elliptic curves and unit groups of number fields. In this note, we follow the analogy to constr...
متن کاملExplicit Heegner Points: Kolyvagin’s Conjecture and Non-trivial Elements in the Shafarevich-Tate Group
Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over Q and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin’s conjecture. More precisely, we explicitly compute Heegner points over ring class fields...
متن کاملWeil–Châtelet divisible elements in Tate–Shafarevich groups II: On a question of Cassels
For an abelian variety A over a number field k we discuss the divisibility in H(k,A) of elements of the subgroup X(A/k). The results are most complete for elliptic curves over Q.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003