A modified Covariance Matrix Adaptation Evolution Strategy with adaptive penalty function and restart for constrained optimization
نویسندگان
چکیده
In the last decades, a number of novel meta-heuristics and hybrid algorithms have been proposed to solve a great variety of optimization problems. Among these, constrained optimization problems are considered of particular interest in applications from many different domains. The presence of multiple constraints can make optimization problems particularly hard to solve, thus imposing the use of specific techniques to handle fitness landscapes which generally show complex properties. In this paper, we introduce a modified Covariance Matrix Adaptation Evolution Strategy (CMA-ES) specifically designed for solving constrained optimization problems. The proposed method makes use of the restart mechanism typical of most modern variants of CMA-ES, and handles constraints by means of an adaptive penalty function. This novel CMA-ES scheme presents competitive results on a broad set of benchmark functions and engineering problems, outperforming most state-of-the-art algorithms as for both efficiency and constraint handling. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملTHE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES
Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...
متن کاملUsing CMA-ES for tuning coupled PID controllers within models of combustion engines
Proportional integral derivative (PID) controllers are important and widely used tools of system control. In this paper, we deal with the problem of tuning multiple coupled PID controllers within the practical context of combustion engine simulations, where no information about the controlled system is provided. We formulate the problem as a black-box optimization problem and, based on its prop...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملModified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations
In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014