Ultrafast excited-state charge transfer at a conical intersection: effects of an environment

نویسندگان

  • Irene Burghardt
  • Lorenz S. Cederbaum
  • James T. Hynes
چکیده

The influence of a polar and polarizable environment on charge transfer processes at a conical intersection (CI) can be described by a diabatic free energy model yielding coupled surfaces as a function of both molecular coordinates and a solvent coordinate. We extend and apply this model for the S1-S0 CI in protonated Schiff bases, representing a model for retinal isomerization (Faraday Discuss. 2004, 127, 395, 2004). A dielectric continuum description of the solvent is combined with a minimal, two-electron-two-orbital electronic structure model according to Bonacić-Koutecký, Koutecký, and Michl (Angew. Chem. 1987, 26, 170), which characterizes the charge translocation effects at the CI. The model predicts that the nonequilibrium solvent state resulting from the S0-->S1 Franck-Condon transition can entail the disappearance of the CI, such that solvent motion is necessary to reach the CI seam. The concerted evolution of the intramolecular coordinates and the solvent coordinate is illustrated by an excited-state minimum energy path.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valence-bond non-equilibrium solvation model for a twisting monomethine cyanine.

We propose and analyze a two-state valence-bond model of non-equilibrium solvation effects on the excited-state twisting reaction of monomethine cyanines. Suppression of this reaction is thought responsible for environment-dependent fluorescence yield enhancement in these dyes. Fluorescence is quenched because twisting is accompanied via the formation of dark twisted intramolecular charge-trans...

متن کامل

Molecular features in complex environment: Cooperative team players during excited state bond cleavage

Photoinduced bond cleavage is often employed for the generation of highly reactive carbocations in solution and to study their reactivity. Diphenylmethyl derivatives are prominent precursors in polar and moderately polar solvents like acetonitrile or dichloromethane. Depending on the leaving group, the photoinduced bond cleavage occurs on a femtosecond to picosecond time scale and typically lea...

متن کامل

Ultrafast deactivation of an excited cytosine-guanine base pair in DNA.

Multiconfigurational ab initio calculations and QM/MM molecular dynamics simulations of a photoexcited cytosine-guanine base pair in both gas phase and embedded in the DNA provide detailed structural and dynamical insights into the ultrafast radiationless deactivation mechanism. Photon absorption promotes transfer of a proton from the guanine to the cytosine. This proton transfer is followed by...

متن کامل

Relaxation dynamics of photoexcited resorcinol: internal conversion versus H atom tunnelling.

The excited state dynamics of resorcinol (1,3-dihydroxybenzene) following UV excitation at a range of pump wavelengths, 278 ≥ λ ≥ 255 nm, have been investigated using a combination of time-resolved velocity map ion imaging and ultrafast time-resolved ion yield measurements coupled with complementary ab initio calculations. After excitation to the 1(1)ππ* state we extract a timescale, τ1, for ex...

متن کامل

Mechanism of an Exceptional Class of photostabilizers: a seam of conical intersection parallel to excited state intramolecular proton transfer (ESIPT) in o-hydroxyphenyl-(1,3,5)-triazine.

We present a detailed CASSCF study of the mechanism of excited-state intramolecular proton transfer (ESIPT) in the o-hydroxyphenyl triazine class of photostabilizers. The valence-bond analysis of the ground state and the two pipi* excited states permits a simple chemical interpretation of the mechanistic information. Our results show that the barrier to enol-keto tautomerism on the ground-state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 40  شماره 

صفحات  -

تاریخ انتشار 2005