A c-di-GMP-Modulating Protein Regulates Swimming Motility of Burkholderia cenocepacia in Response to Arginine and Glutamate

نویسندگان

  • Brijesh Kumar
  • John L. Sorensen
  • Silvia T. Cardona
چکیده

Burkholderia cenocepacia is an opportunistic bacterium that can thrive in different environments, including the amino acid-rich mucus of the cystic fibrosis (CF) lung. B. cenocepacia responds to the nutritional conditions that mimic the CF sputum by increasing flagellin expression and swimming motility. Individual amino acids also induce swimming but not flagellin expression. Here, we show that modulation of the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) levels by the PAS-containing c-di-GMP phosphodiesterase, BCAL1069 (CdpA), regulates the swimming motility of B. cenocepacia K56-2 in response to CF sputum nutritional conditions. Heterologous expression of WspR, a diguanylate cyclase, in B. cenocepacia K56-2 caused an increase in c-di-GMP levels and reduced swimming motility but did not affect flagellin expression or flagellar biosynthesis. After insertional mutagenesis of 12 putative genes encoding c-di-GMP metabolizing enzymes, one mutant of the locus BCAL1069 (cdpA), exhibited decreased swimming motility independent of flagellin expression in CF sputum nutritional conditions and an increase in intracellular c-di-GMP levels. The reduced swimming motility phenotype of the BCAL1069 mutant was observed in the presence of arginine and glutamate, but not of histidine, phenylalanine, or proline. The B. cenocepacia CdpA was also found to be involved in regulation of protease activity but not in biofilm formation. Altogether, these results highlight a role of B. cenocepacia BCAL1069 (CdpA) in sensing the nutritional conditions of the CF sputum and eliciting a pathogenic response that includes swimming motility toward amino acids and an increase in protease activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence.

Quorum sensing (QS) signals are used by bacteria to regulate biological functions in response to cell population densities. Cyclic diguanosine monophosphate (c-di-GMP) regulates cell functions in response to diverse environmental chemical and physical signals that bacteria perceive. In Burkholderia cenocepacia, the QS signal receptor RpfR degrades intracellular c-di-GMP when it senses the QS si...

متن کامل

Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c‐di‐GMP effector BerB

Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evid...

متن کامل

Identification of flgZ as a Flagellar Gene Encoding a PilZ Domain Protein That Regulates Swimming Motility and Biofilm Formation in Pseudomonas

Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113...

متن کامل

The exopolysaccharide gene cluster Bcam1330–Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in fl...

متن کامل

Regulation of biofilm formation in Pseudomonas and Burkholderia species.

In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018