Slow dynamics of water confined in Newton black films.
نویسندگان
چکیده
Slowdown of translational and reorientational dynamics of water confined in Newton black films (NBFs) is revealed by molecular dynamics simulations. As a film becomes thinner, both translational and reorientational dynamics become slower. The polarization of water molecules in the macroscopic electrostatic field across the NBF and the coordination of Na(+) ions and surfactant anionic groups around water molecules concertedly lead to slowdown of water dynamics. The polarization effect is obvious for water not coordinated by Na(+) ions, which exhibits reorientational dynamics depending on initial dipole orientations. Na(+) ions and surfactant anionic groups retard dynamics of surrounding water by decreasing the hydrogen bond exchange probability and increasing the viscosity of water. The dependences of translational and reorientational dynamics on coordination environments of water are similar. Dynamics of water in positions close to the interfaces of NBFs are mainly retarded by Na(+) ions and surfactant anionic groups, while the macroscopic polarization effect plays the main role in influencing water dynamics in positions far from the interfaces. This study sheds light on the improvement of knowledge about the water dynamics slowdown mechanism in similar environments like reverse micelles and lamellar structures.
منابع مشابه
Adhesive transitions in Newton black films: a computer simulation study.
We report molecular dynamics simulations of Newton black films (NBFs), ultra thin films of aqueous solutions stabilized with two monolayers of ionic surfactants, sodium dodecyl sulfate. We show that at low water content conditions and areas per surfactant corresponding to experimental estimates in NBFs, homogeneous films undergo an adhesion "transition," which results in a very thin adhesive fi...
متن کاملAnomalous dielectric behavior of water in ionic newton black films.
The electrostatics of two charged surfactant layers in aqueous media (surfactant/water/surfactant films) is investigated using molecular dynamics simulations. In the films studied (with a surfactant-surfactant distance from approximately 35 A to contact) we observe an anomalous dielectric response of water. The electrostatic potential phi(z) inside the aqueous core of the films (containing bulk...
متن کاملOrigin of the short-range, strong repulsive force between ionic surfactant layers.
We study the electrostatic interaction between two ionic surfactant layers by performing molecular dynamic simulations of salt-free thin water films coated by surfactants (Newton black films). We find a strong exponentially decaying short-range repulsion not explained by classical Poisson-Boltzmann theory. This electrostatic force is shown to be mainly due to the anomalous dielectric response o...
متن کاملStick-slip control in nanoscale boundary lubrication by surface wettability.
We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale c...
متن کاملComment on "Stability of soap films: hysteresis and nucleation of black films".
We study the stability of soap films of a nonionic surfactant under different applied capillary pressures on the film. Depending on the pressure, either a thick common black film (CBF), or a micro-scopically thin Newton black film (NBF) is formed as a (metastable) equilibrium state, with a first-order (discontinuous) transition between the two. Studying the dynamics of the CBF-NBF transition, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 29 شماره
صفحات -
تاریخ انتشار 2015