On the accuracy of judgmental interventions on forecasting support systems
نویسندگان
چکیده
All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission, provided that full acknowledgement is given. Abstract Forecasting at the Stock Keeping Unit (SKU) disaggregate level in order to support operations management has proved a very difficult task. The levels of accuracy achieved have major consequences for companies at all levels in the supply chain; errors at each stage are amplified resulting in poor service and overly high inventory levels. In most companies, the size and complexity of the forecasting task necessitates the use of Forecasting Support Systems (FSS). The present study examines monthly demand data and forecasts for 44 fast moving, A-class, durable SKUs, collected from a major U.K. supplier. The company relies upon a FSS to produce baseline forecasts per SKU for each period. Final forecasts are produced at a later stage through the superimposition of judgments based on marketing intelligence gathered by the company forecasters. The benefits of the intervention are evaluated by comparing the actual sales both to system and final forecasts. The findings support the case that adjustments do improve accuracy, particularly under the condition that the adjustment is conservative, in the right direction, but does not overshoot. The question is how best to meet these conditions.
منابع مشابه
Do 'big losses' in judgmental adjustments to statistical forecasts affect experts' behaviour?
The behaviour of poker players and sports gamblers has been shown to change after winning or losing a significant amount of money on a single hand. In this paper, we explore whether there are changes in experts’ behaviour when performing judgmental adjustments to statistical forecasts and, in particular, examine the impact of ‘big losses’. We define a big loss as a judgmental adjustment that si...
متن کاملUsing a rolling training approach to improve judgmental extrapolations elicited from forecasters with technical knowledge
Several biases and inefficiencies are commonly associated with the judgmental extrapolation of time series even when forecasters have technical knowledge about forecasting. This study examines the effectiveness of using a rolling training approach, based on feedback, to improve the accuracy of forecasts elicited from people with such knowledge. In an experiment forecasters were asked to make mu...
متن کاملUsing Methods Based on Neural Networks to Predict and Manage Diseases (A Case Study of Forecasting the Trend of Corona Disease)
Aim and background: Forecasting methods are used in various fields; one of the most important fields is the field of health systems. This study aimed to use the Artificial Neural Network (ANN) method in forecasting Corona patients in Iran. Method: The present study is descriptive and analytical of a comparative type that uses past information to predict the future, the time series of Corona in...
متن کاملSeven Components of Judgmental Forecasting Skill: Implications for Research and the Improvement of Forecasts
A decomposition of the Brier skill score shows that the performance of judgmental forecasts depends on seven components: environmental predictability, fidelity of the information system, match between environment and forecaster, reliability of information acquisition, reliability of information processing, conditional bias, and unconditional bias. These components provide a framework for resear...
متن کاملModeling and forecasting US presidential election using learning algorithms
The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005