Modern Mathematics in Biomedical Imaging
نویسندگان
چکیده
Over the past decades, modern mathematics is playing an increasingly important role in the development of biomed-ical imaging, yielding groundbreaking ideas and powerful tools for clinical and preclinical applications. Nevertheless, there are not only growing obstacles between applied mathematicians and imaging engineers to communicate more effectively but also great synergy to be unlocked across boundaries between mathematics and imaging technology. Suggested by the Editor-in-Chief, we organized this special issue to address theseunique challenges by presenting some sophisticated mathematical methods in an engineer-friendly language and demonstrating some representative applications of contemporary analytic tools in image reconstruction research. Nonrigid image registration and a diffeomorphic version of the demons algorithm have been commonly used to estimate tissue deformations in highly deformable anatomies. In the paper by G. Janssens et al. in this issue, the authors further developed the concept of continuous diffeomorphic flow and proposed a diffeomorphic version of the morphons registration method. This method can be used to obtain accurate estimation of deformations between images with variable contrast and hence can be applied to radiotherapy for lung cancer patients and to 4D respiratory-correlated CT of the thorax. Bioluminescence tomography (BLT) has been developed at a fast pace in recent years in study of physiological and pathological processes at cellular and molecular levels. In practice, fine discretization is required but may cause large datasets and an increase the ill-posedness of the problem. In the paper by J. Liu et al. in this issue, the authors present a multilevel sparse reconstruction method based on a framework of the finite-element method. Empirical results showed its effectiveness and potential applications in BLT. When one considers the time-integrated X-ray flux from multiple X-ray sources to shorten the data acquisition process, a promising way is to use overlapped projections from multiple X-ray sources. In order to perform image reconstruction effectively and efficiently from overlapping projections in this configuration, H. Yu et al. developed a multisource simultaneous-algebraic reconstruction technique regularized by a sparsity-oriented constraint in the soft-threshold filtering framework in their paper in this issue. Their numerical simulation further verified the proposed algorithm and demonstrated its advantages in image reconstruction from overlapping data. Mathematical modeling in dynamic positron emission tomography (PET) can be simplified, using compartment models as a linear system. To avoid invasive arterial sampling of blood to acquire values of tracer concentration, blind methods to estimate both blood input and kinetic parameters have recently drawn attention. In …
منابع مشابه
Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review
Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...
متن کاملUse of Magnetic Resonance Imaging in Food Quality Control: A Review
Modern challenges of food science require a new understanding of the determinants of food quality and safety. Application of advanced imaging modalities such as magnetic resonance imaging (MRI) has seen impressive successes and fast growth over the past decade. Since MRI does not have any harmful ionizing radiation, it can be considered as a magnificent tool for the quality control of food prod...
متن کاملQuantitative Biomedical Optics
This is the textbook and reference resource that instructors, students, and researchers in biomedical optics have been waiting for. Comprehensive and up-to-date, it covers a broad range of areas in biomedical optics, from light interactions at the single-photon and single-biomolecule levels, to the diffusion regime of light propagation in tissue. Subjects covered include spectroscopic technique...
متن کاملModern technologies for retinal scanning and imaging: an introduction for the biomedical engineer
This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage "classical" biomedical engineers to generate new ideas and to initiate pro...
متن کاملModern imaging technologies in toxicologic pathology: An overview.
Modern imaging technology, now utilized in most biomedical research areas (bioimaging), enables the detection and visualization of biological processes at various levels of the molecule, organelle, cell, tissue, organ and/or whole body. In toxicologic pathology, the impact of modern imaging technology is becoming apparent from digital histopathology to novel molecular imaging for in vivo studie...
متن کاملRough Sets in Biomedical Informatics
The intent of this paper is to face the essentials of granular computing and in its major component— the rough sets theory, introduced by Pawlak, since any rough set represents an information granule. As a part of modern soft computing paradigm, rough sets have been introduced as an interval-like extension of the usual sets with main applications in the intelligent systems. The proposed rough a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011