A Constraint Learning Algorithm for Blind Source Separation

نویسندگان

  • Kenji Nakayama
  • Akihiro Hirano
  • Motoki Nitta
چکیده

Abstract In Jutten’s blind separation algorithm, symmetrical distribution and statistical independence of the signal sources are assumed. When they are not satisfied, the learning process becomes unstable. In order to avoid the unstable behavior, two stabilization methods are proposed. Since large samples easily disturb symmetrical distribution, the outputs of the separation process with large amplitude are detected, and the learning is skipped. Imbalance of the signal source powers affects statistical independence. It is estimated by the cross-correlation of the observed signals. When the cross-correlation is high, the correction term by the Jutten’s algorithm becomes wrong. Therefore, adjusting the weights in the separation process is skipped. Computer simulation using many kinds of signal sources demonstrates the signal sources with asymmetrical distribution and imbalanced power are well separated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

A Distortion-Free Learning Algorithm for Feedforward Multi-Channel Blind Source Separation

FeedForward (FF-) Blind Source Separation (BSS) systems have some degree of freedom in the solution space. Therefore, signal distortion is likely to occur. First, a criterion for the signal distortion is discussed. Properties of conventional methods proposed to suppress the signal distortion are analyzed. Next, a general condition for complete separation and distortion-free is derived for multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000