A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif.

نویسندگان

  • Sandra Martínez-Turiño
  • Carmen Hernández
چکیده

Two small viral proteins (DGBp1 and DGBp2) have been proposed to act in a concerted manner to aid intra- and intercellular trafficking of carmoviruses though the distribution of functions and mode of action of each protein partner are not yet clear. Here we have confirmed the requirement of the DGBps of Pelargonium flower break virus (PFBV), p7 and p12, for pathogen movement. Studies focused on p12 have shown that it associates to cellular membranes, which is in accordance to its hydrophobic profile and to that reported for several homologs. However, peculiarities that distinguish p12 from other DGBps2 have been found. Firstly, it contains a leucine zipper-like motif which is essential for virus infectivity in plants. Secondly, it has an unusually long and basic N-terminal region that confers RNA binding activity. The results suggest that PFBV p12 may differ mechanistically from related proteins and possible roles of PFBV DGBps are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein.

Tomato bushy stunt virus and its cell-to-cell movement protein (MP; P22) provide valuable tools to study trafficking of macromolecules through plants. This study shows that wild-type P22 and selected movement-defective P22 amino acid substitution mutants were equivalent for biochemical features commonly associated with MPs (i.e. RNA binding, phosphorylation, and membrane partitioning). This gen...

متن کامل

An Internal Ribosome Entry Site Directs Translation of the 3′-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity

Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusvi...

متن کامل

Analysis of the subcellular targeting of the smaller replicase protein of Pelargonium flower break virus.

Replication of all positive RNA viruses occurs in association with intracellular membranes. In many cases, the mechanism of membrane targeting is unknown and there appears to be no correlation between virus phylogeny and the membrane systems recruited for replication. Pelargonium flower break virus (PFBV, genus Carmovirus, family Tombusviridae) encodes two proteins, p27 and its read-through pro...

متن کامل

An Update on the Intracellular and Intercellular Trafficking of Carmoviruses

Despite harboring the smallest genomes among plant RNA viruses, carmoviruses have emerged as an ideal model system for studying essential steps of the viral cycle including intracellular and intercellular trafficking. Two small movement proteins, formerly known as double gene block proteins (DGBp1 and DGBp2), have been involved in the movement throughout the plant of some members of carmovirus ...

متن کامل

Mutational analysis of the leucine zipper-like motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein.

The N-terminal region of the envelope (env) transmembrane protein of human immunodeficiency virus type 1 (HIV-1) has a leucine zipper-like motif. This highly conserved zipper motif, which consists of a heptad repeat of leucine or isoleucine residues, has been suggested to play a role in HIV-1 env glycoprotein oligomerization. This hypothesis was tested by replacing the highly conserved leucine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Virology

دوره 413 2  شماره 

صفحات  -

تاریخ انتشار 2011