Lorentzian spectral geometry for globally hyperbolic surfaces

نویسندگان

  • Felix Finster
  • Olaf Müller
چکیده

The fermionic signature operator is analyzed on globally hyperbolic Lorentzian surfaces. The connection between the spectrum of the fermionic signature operator and geometric properties of the surface is studied. The findings are illustrated by simple examples and counterexamples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A C∗-algebra approach to noncommutative Lorentzian geometry of globally-hyperbolic spacetimes

The causal and metric structure of globally hyperbolic spacetimes is investigated from a C∗-algebra point of view related to part of Connes’ noncommutative geometry programme. No foliation of the spacetime by means of spacelike surfaces is employed, but the complete Lorentzian geometry is considered. Several results are produced. As a first result, Connes’ functional formula of the distance is ...

متن کامل

The Cauchy Problem of Lorentzian Minimal Surfaces in Globally Hyperbolic Manifolds

In this note a proof is given for global existence and uniqueness of minimal Lorentzian surface maps from a cylinder into globally hyperbolic Lorentzian manifolds for given initial values up to the first derivatives.

متن کامل

Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes

Connes’ functional formula of the Riemannian distance is generalized to the Lorentzian case using the so-called Lorentzian distance, the d’Alembert operator and the causal functions of a globally hyperbolic spacetime. As a step of the presented machinery, a proof of the almosteverywhere smoothness of the Lorentzian distance considered as a function of one of the two arguments is given. Afterwar...

متن کامل

Nice foliations of globally hyperbolic manifolds

In the research on classical field theory on Lorentzian manifolds, over the decades it became more and more transparent that the most appropriate geometric category for classical field theory is the one of globally hyperbolic manifolds (together with their casusal embeddings). On one hand, this is due to its relatively easy and invariant definition as the category of manifolds with compact caus...

متن کامل

Global Existence and Uniqueness of Minimal Surfaces in Globally Hyperbolic Manifolds

In this note a proof is given for global existence and uniqueness of minimal surfaces of Lorentzian type from a cylinder into certain Lorentzian manifolds for given initial values up to the first derivatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014