Polynomial Evaluation and Interpolation and Transformations of Matrix Structures
نویسنده
چکیده
Multipoint polynomial evaluation and interpolation are fundamental for modern numerical and symbolic computing. The known algorithms solve both problems over any field of constants in nearly linear arithmetic time, but the cost grows to quadratic for numerical solution. We decrease this cost dramatically and for a large class of inputs yield nearly linear time as well. We first restate our tasks as multiplication of a Vandermonde matrix and its inverse by a vector, then transform this matrix into other structured matrices, and finally apply a variant of the Multipole celebrated techniques to achieve the desired speedup for the computations with polynomials, Vandermonde matrices and their transposes. An important impact of our work is a new demonstration of the power of the method of the transformation of matrix structures, which we proposed in [P90]. At the end we comment on further applications and extension of this method to computations with structured matrices, polynomials, and rational functions.
منابع مشابه
New Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملTR-2013006: Polynomial Evaluation and Interpolation and Transformations of Matrix Structures
Multipoint polynomial evaluation and interpolation are fundamental for modern numerical and symbolic computing. The known algorithms solve both problems over any field of constants in nearly linear arithmetic time, but the cost grows to quadratic for numerical solution. We decrease this cost dramatically and for a large class of inputs yield nearly linear time as well. We first restate our task...
متن کاملTR-2013004: Transformations of Matrix Structures Work Again
In [P90] we proposed to employ Vandermonde and Hankel multipliers to transform into each other the matrix structures of Toeplitz, Hankel, Vandermonde and Cauchy types as a means of extending any successful algorithm for the inversion of matrices having one of these structures to inverting the matrices with the structures of the three other types. Surprising power of this approach has been demon...
متن کاملTransformations of Matrix Structures Work Again
In [P90] we proposed to employ Vandermonde and Hankel multipliers to transform into each other the matrix structures of Toeplitz, Hankel, Vandermonde and Cauchy types as a means of extending any successful algorithm for the inversion of matrices having one of these structures to inverting the matrices with the structures of the three other types. Surprising power of this approach has been demon...
متن کاملTHE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA
The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013