The Complexity of Computing Hard Core Predicates

نویسندگان

  • Mikael Goldmann
  • Mats Näslund
چکیده

We prove that a general family of hard core predicates requires circuits of depth (l-o(l)) ~ or super-polynomial size to be realized. This lower bound is essentially tight, l~or constant depth circuits, an exponential lower bound on the size is obtained. Assuming the existence of one-way functions, we explicitly construct a one-way function f(x) such that for any circuit c from a family of circuits as above, c(x) is almost always predictable from f(x).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

Intractability results in predicate detection

It has been shown that global predicate detection in a distributed computation is an NP-complete problem in general. However, polynomial-time predicate detection algorithms exist for some classes of predicates, such as stable predicates, observer-independent predicates, conjunctions of local predicates etc. We show here that, given a class of predicates for which polynomial-time detection algor...

متن کامل

Proving Hard-Core Predicates Using List Decoding

We introduce a unifying framework for proving that predicate P is hard-core for a one-way function f, and apply it to a broad family of functions and predicates, reproving old results in an entirely different way as well as showing new hard-core predicates for well known one-way function candidates. Our framework extends the list-decoding method of Goldreich and Levin for showing hard-core pred...

متن کامل

Some Applications of Coding Theory in Computational Complexity

Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-c...

متن کامل

A Hard Convex Core Yukawa Equation of State for Nonassociated Chain Molecules

The compressibility factor of nonassociated chain molecules composed of hard convex core Yukawa segments was derived with SAFT-VR and an extension of the Barker-Henderson perturbation theory for convex bodies. The temperature-dependent chain and dispersion compressibility factors were derived using the Yukawa potential. The effects of temperature, packing fraction, and segment number on the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997