Relativistic r - modes and Shear viscosity : regularizing the continuous spectrum

نویسندگان

  • J. A. Pons
  • L. Gualtieri
  • J. A. Miralles
  • V. Ferrari
چکیده

Within a fully relativistic framework, we derive and solve numerically the perturbation equations of relativistic stars, including the stresses produced by a non-vanishing shear viscosity in the stress-energy tensor. With this approach, the real and imaginary parts of the frequency of the modes are consistently obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is reg-ularized and we can calculate the quasi-normal modes for stellar models that do not admit solutions at first order in perturbation theory when the coupling between the polar and axial perturbations is neglected. The viscous damping time is found to agree within factor 2 with the usual estimate obtained by using the eigenfunctions of the inviscid limit and some approximation for the energy dissipation integrals. We find that the frequencies and viscous damping times for relativistic r−modes lie between the Newtonian and Cowling results. We compare the results obtained with homogeneous, polytropic and realistic equations of state and find that the frequencies depend only on the rotation rate and on the compactness parameter M/R, being almost independent of the equation of state. Our numerical results for realistic neutron stars give viscous damping times with the same dependence on mass and radius as previously estimated, but systematically larger of about 60%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

ar X iv : g r - qc / 0 70 20 40 v 1 7 F eb 2 00 7 Relativistic r - modes and shear viscosity

We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitat...

متن کامل

Effects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars

Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...

متن کامل

Inertial modes of slowly rotating relativistic stars in the Cowling approximation

We study oscillations of slowly rotating relativistic barotropic as well as non-barotropic polytropic stars in the Cowling approximation, including first order rotational corrections. By taking into account the coupling between the polar and axial equations, we find that, in contrast to previous results, the m = 2 r modes are essentially unaffected by the continuous spectrum and exist even for ...

متن کامل

Nonlinear Evolution of R-modes in Rotating Relativistic Stars

A numerical study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3-D general-relativistic hydrodynamical evolutions, is presented. On dynamical timescales, we find no evidence for strong coupling of r-modes to other modes at amplitudes of order one or larger. Therefore, unless nonlinear saturation sets in on longer timescales, the maximum r-mode amplitude is of ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008