Finite Element and Neuroimaging Techniques to Improve Decision-Making in Clinical Neuroscience

نویسنده

  • Xiaogai Li
چکیده

Our brain, perhaps the most sophisticated and mysterious part of the human body, to some extent, determines who we are. However, it’s a vulnerable organ. When subjected to an impact, such as a traffic accident or sport, it may lead to traumatic brain injury (TBI) which can have devastating effects for those who suffer the injury. Despite lots of efforts have been put into primary injury prevention, the number of TBIs is still on an unacceptable high level in a global perspective. Brain edema is a major neurological complication of moderate and severe TBI, which consists of an abnormal accumulation of fluid within the brain parenchyma. Clinically, local and minor edema may be treated conservatively only by observation, where the treatment of choice usually follows evidence-based practice. In the first study, the gravitational force is suggested to have a significant impact on the pressure of the edema zone in the brain tissue. Thus, the objective of the study was to investigate the significance of head position on edema at the posterior part of the brain using a Finite Element (FE) model. The model revealed that water content (WC) increment at the edema zone remained nearly identical for both supine and prone positions. However, the interstitial fluid pressure (IFP) inside the edema zone decreased around 15% by having the head in a prone position compared with a supine position. The decrease of IFP inside the edema zone by changing patient position from supine to prone has the potential to alleviate the damage to axonal fibers of the central nervous system. These observations suggest that considering the patient’s head position during intensive care and at rehabilitation should be of importance to the treatment of edematous regions in TBI patients. In TBI patients with diffuse brain edema, for most severe cases with refractory intracranial hypertension, decompressive craniotomy (DC) is performed as an ultimate therapy. However, a complete consensus on its effectiveness has not been achieved due to the high levels of severe disability and persistent vegetative state found in the patients treated with DC. DC allows expansion of the swollen brain outside the skull, thereby having the potential in reducing the Intracranial Pressure (ICP). However, the treatment causes stretching of the axons and may contribute to the unfavorable outcome of the patients. The second study aimed at quantifying the stretching and WC in the brain tissue due to the neurosurgical intervention to provide more insight into the effects upon such a treatment. A nonlinear registration method was used to quantify the strain. Our analysis showed a substantial increase of the strain level in the brain tissue close to the treated side of DC compared to before the treatment. Also, the WC was related to specific gravity (SG), which in turn was related to the Hounsfield unit (HU) value in the Computerized Tomography (CT) images by a photoelectric correction according to the chemical composition of the brain tissue. The overall WC of brain tissue presented a significant increase after the treatment compared to the condition seen before the treatment. It is suggested that a quantitative model, which characterizes the stretching and WC of the brain tissue

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Effect of Concept Mapping to Clinical Simulation on Emergency Medical Students` Clinical Decision Making

Introduction: Application of appropriate teaching techniques can increase decision-making skills in emergency settings. Considering the importance of decision-making for rescuers in prevention of deteriorating problems and maintaining patient’s safety in the first level of care, the aim of this study was to compare the effect of two educational methods (concept mapping and clinical simulation) ...

متن کامل

Toward a neurobiology of psychotherapy: basic science and clinical applications.

Psychotherapy is used commonly to treat a variety of mental illnesses, yet surprisingly little is known about its biological mechanisms especially in comparison with pharmacotherapy. In this review we survey the current knowledge about changes in brain function following psychotherapeutic intervention that are detectable with current neuroimaging techniques. We also consider the possible role f...

متن کامل

Clinical decision making in Iranian nurses: systematic review

Introduction: Clinical decision making is one of the most important processes which nurses always use to care for patients. Appropriate decisions help to improve the quality of care, reduce the duration of illness and disability, reduce costs and make optimal use of resources. Therefore, the purpose of this research was to review studies conducted in the field of clinical decision making of Ira...

متن کامل

Molecular neuroimaging of emotional decision-making

With the dissemination of non-invasive human neuroimaging techniques such as fMRI and the advancement of cognitive science, neuroimaging studies focusing on emotions and social cognition have become established. Along with this advancement, behavioral economics taking emotional and social factors into account for economic decisions has been merged with neuroscientific studies, and this interdis...

متن کامل

Transcranial Direct Current Stimulation of Dorsolateral Prefrontal Cortex in Patients with Obsessive Compulsive Disorder to Improve Decision Making and Reduce Obsession Symptoms

Objective: Recent studies on treating obsessive compulsive disorder (OCD) have investigated noninvasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) to improve patients’ impaired emotion and cognition. However, such experiments have yielded mixed results, especially with respect to cognition. This study aimed to investigate whethe...

متن کامل

The involvement of the striatum in decision making

Decision making has been extensively studied in the context of economics and from a group perspective, but still little is known on individual decision making. Here we discuss the different cognitive processes involved in decision making and its associated neural substrates. The putative conductors in decision making appear to be the prefrontal cortex and the striatum. Impaired decision-making ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012