Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism
نویسندگان
چکیده
To achieve effective visual tracking, a robust feature representation composed of two separate components (i.e., feature learning and selection) for an object is one of the key issues. Typically, a common assumption used in visual tracking is that the raw video sequences are clear, while real-world data is with significant noise and irrelevant patterns. Consequently, the learned features may be not all relevant and noisy. To address this problem, we propose a novel visual tracking method via a point-wise gated convolutional deep network (CPGDN) that jointly performs the feature learning and feature selection in a unified framework. The proposed method performs dynamic feature selection on raw features through a gating mechanism. Therefore, the proposed method can adaptively focus on the task-relevant patterns (i.e., a target object), while ignoring the task-irrelevant patterns (i.e., the surrounding background of a target object). Specifically, inspired by transfer learning, we firstly pre-train an object appearance model offline to learn generic image features and then transfer rich feature hierarchies from an offline pre-trained CPGDN into online tracking. In online tracking, the pre-trained CPGDN model is fine-tuned to adapt to the tracking specific objects. Finally, to alleviate the tracker drifting problem, inspired by an observation that a visual target should be an object rather than not, we combine an edge box-based object proposal method to further improve the tracking accuracy. Extensive evaluation on the widely used CVPR2013 tracking benchmark validates the robustness and effectiveness of the proposed method.
منابع مشابه
Real-Time and Robust Visual Tracking
Visual tracking has been extensively studied because of its importance in practical applications such as visual surveillance, human computer interaction, traffic monitoring, to name a few. Despite extensive research in this topic with demonstrated success, it is still a very challenging task to build a robust and efficient tracking system to deal with various appearance changes caused by pose v...
متن کاملAdaptive Multiple Component Metric Learning for Robust Visual Tracking
In this paper, we present a new robust visual tracking approach that incorporates an adaptive metric learning in a multiple components framework. Using a similar overall approach to other state-of-the-art tracking methods, which pose object tracking as a binary classification problem, we firstly employ a new feature selection mechanism based on adaptive metric learning for constructing a discri...
متن کاملLearning and Selecting Features Jointly with Point-wise Gated Boltzmann Machines
Unsupervised feature learning has emerged as a promising tool in learning representations from unlabeled data. However, it is still challenging to learn useful high-level features when the data contains a significant amount of irrelevant patterns. Although feature selection can be used for such complex data, it may fail when we have to build a learning system from scratch (i.e., starting from t...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016