Ramoplanin at Bactericidal Concentrations Induces Bacterial Membrane Depolarization in Staphylococcus aureus
نویسندگان
چکیده
Ramoplanin is an actinomycetes-derived antibiotic with broad-spectrum activity against Gram-positive bacteria that has been evaluated in clinical trials for the treatment of gastrointestinal vancomycin-resistant enterococci (VRE) and Clostridium difficile infections. Recent studies have proposed that ramoplanin binds to bacterial membranes as a C2 symmetrical dimer that can sequester Lipid II, which causes inhibition of cell wall peptidoglycan biosynthesis and cell death. In this study, ramoplanin was shown to bind to anionic and zwitterionic membrane mimetics with a higher affinity for anionic membranes and to induce membrane depolarization of methicillin-susceptible Staphylococcus aureus (MSSA) ATCC 25923 at concentrations at or above the minimal bactericidal concentration (MBC). The ultrastructural effects of ramoplanin on S. aureus were also examined by transmission electron microscopy (TEM), and this showed dramatic changes to bacterial cell morphology. The correlation observed between membrane depolarization and bacterial cell viability suggests that this mechanism may contribute to the bactericidal activity of ramoplanin.
منابع مشابه
Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus.
The objective of this study was to further elucidate the role of membrane potential in the mechanism of action of daptomycin, a novel lipopeptide antibiotic. Membrane depolarization was measured by both fluorimetric and flow cytometric assays. Adding daptomycin (5 micro g/ml) to Staphylococcus aureus gradually dissipated membrane potential. In both assays, cell viability was reduced by >99% and...
متن کاملOritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro.
Slow-growing bacteria and biofilms are notoriously tolerant to antibiotics. Oritavancin is a lipoglycopeptide with multiple mechanisms of action that contribute to its bactericidal action against exponentially growing gram-positive pathogens, including the inhibition of cell wall synthesis and perturbation of membrane barrier function. We sought to determine whether oritavancin could eradicate ...
متن کاملInhibition of peptidoglycan biosynthesis by ramoplanin.
Ramoplanin, a new lipoglycopeptide antibiotic, inhibits cell wall peptidoglycan biosynthesis in gram-positive bacteria. In both Staphylococcus aureus and Bacillus megaterium, UDP-N-acetylmuramyl-pentapeptides (UDP-MurNAc-pentapeptides) accumulated at concentrations of ramoplanin close to the MIC, indicating that inhibition of peptidoglycan biosynthesis occurred after formation of cytoplasmic pr...
متن کاملTelavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II.
Telavancin is an investigational lipoglycopeptide antibiotic currently being developed for the treatment of serious infections caused by gram-positive bacteria. The bactericidal action of telavancin results from a mechanism that combines the inhibition of cell wall synthesis and the disruption of membrane barrier function. The purpose of the present study was to further elucidate the mechanism ...
متن کاملTranscriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization.
Daptomycin is a lipopeptide antibiotic that has recently been approved for treatment of gram-positive bacterial infections. The mode of action of daptomycin is not yet entirely clear. To further understand the mechanism transcriptomic analysis of changes in gene expression in daptomycin-treated Staphylococcus aureus was carried out. The expression profile indicated that cell wall stress stimulo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 58 شماره
صفحات -
تاریخ انتشار 2014