Eco–Evolutionary Dynamics on Deformable Fitness Landscapes
نویسندگان
چکیده
Conventional approaches to modelling ecological dynamics often do not include evolutionary changes in the genetic makeup of component species and, conversely, conventional approaches to modelling evolutionary changes in the genetic makeup of a population often do not include ecological dynamics. But recently there has been considerable interest in understanding the interaction of evolutionary and ecological dynamics as coupled processes. However, in the context of complex multi-species ecosytems, especially where ecological and evolutionary timescales are similar, it is difficult to identify general organising principles that help us understand the structure and behaviour of complex ecosystems. Here we introduce a simple abstraction of coevolutionary interactions in a multi-species ecosystem. We model non-trophic ecological interactions based on a continuous but low-dimensional trait/niche space, where the location of each species in trait space affects the overlap of its resource utilisation with that of other species. The local depletion of available resources creates, in effect, a deformable fitness landscape that governs how the evolution of one species affects the selective pressures on other species. This enables us to study the coevolution of ecological interactions in an intuitive and easily visualisable manner. We observe that this model can exhibit either of the two behavioural modes discussed in the literature; namely, evolutionary stasis or Red Queen dynamics, i.e., continued evolutionary change. We find that which of these modes is observed depends on the lag or latency between the movement of a Richard A. Watson University of Southampton, School of Electronics and Computer Science, Institute for Life Sciences, Institute for Complex Systems Simulation, Agents Interaction and Complexity, Highfield, Southampton, SO17 1BJ, UK e-mail: [email protected]
منابع مشابه
Adaptation and habitat selection in the eco-evolutionary process.
The struggle for existence occurs through the vital rates of population growth. This basic fact demonstrates the tight connection between ecology and evolution that defines the emerging field of eco-evolutionary dynamics. An effective synthesis of the interdependencies between ecology and evolution is grounded in six principles. The mechanics of evolution specifies the origin and rules governin...
متن کاملEvolution in time-dependent fitness landscapes
Evolution in changing environments is an important, but little studied aspect of the theory of evolution. The idea of adaptive walks in fitness landscapes has triggered a vast amount of research and has led to many important insights about the progress of evolution. Nevertheless, the small step to time-dependent fitness landscapes has most of the time not been taken. In this work, some elements...
متن کاملGillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics.
Heritable trait variation is a central and necessary ingredient of evolution. Trait variation also directly affects ecological processes, generating a clear link between evolutionary and ecological dynamics. Despite the changes in variation that occur through selection, drift, mutation, and recombination, current eco-evolutionary models usually fail to track how variation changes through time. ...
متن کاملUnderstanding Competitive Co-evolutionary Dynamics via Fitness Landscapes
Co-evolutionary EAs are often applied to optimization and machine learning problems with disappointing results. One of the contributing factors to this is the complexity of the dynamics exhibited by co-evolutionary systems. In this paper we focus on a particular form of competitive co-evolutionary EA and study the dynamics of the fitness of the best individuals in the evolving populations. Our ...
متن کاملAdaptive walks on time-dependent fitness landscapes.
The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of the amount of static fitness contributions is investigated for model landscapes derived from Kauffman's NK landscapes. Depending on the amount of static fitness contributions i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016