Multiconfigurational molecular dynamics with quantum transitions: Multiple proton transfer reactions
نویسنده
چکیده
We present the new method ‘‘multiconfigurational molecular dynamics with quantum transitions’’ ~MC-MDQT! for the simulation of processes involving multiple proton transfer reactions. MC-MDQT is a mixed quantum/classical molecular dynamics method that allows the quantum mechanical treatment of the nuclear motion of multiple hydrogen atoms and accurately describes branching processes ~i.e., processes involving multiple channels or pathways!. MC-MDQT is based on the surface hopping method MDQT, which has already been applied to single proton transfer reactions in solution, where the nuclear motion of only the hydrogen atom being transferred is treated quantum mechanically. The direct extension of MDQT to multiple proton transfer reactions, where many hydrogen atoms must be treated quantum mechanically, is not computationally practical. In MC-MDQT a multiconfigurational self-consistent-field method is combined with MDQT to allow the quantum mechanical treatment of multiple hydrogen atoms while still including the significant correlation. The adiabatic states are expanded in a basis set of single configurations, which are products of one-particle states calculated using effective Hamiltonians derived from the occupied adiabatic state. Thus the one-particle states and the multiconfigurational adiabatic states must be calculated self-consistently. Both the MC-MDQT and the full basis set expansion MDQT methods are applied to a model system comprised of two quantum protons moving in double well potentials and one classical harmonic solvent degree of freedom. The results show that MC-MDQT incorporates the significant correlation and accurately describes branching processes. The MC-MDQT method is also used to study model systems comprised of three quantum protons and one classical solvent degree of freedom. © 1996 American Institute of Physics. @S0021-9606~96!00730-1#
منابع مشابه
Mixed Quantum/Classical Dynamics of Hydrogen Transfer Reactions
This article presents the methodology we have developed for the simulation of hydrogen transfer reactions, including multiple proton transfer and proton-coupled electron transfer reactions. The central method discussed is molecular dynamics with quantum transitions (MDQT), which is a mixed quantum/classical surface hopping method that incorporates nonadiabatic transitions between the proton vib...
متن کاملAn analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains
This paper presents an analytical derivation of a multiconfigurational self-consistent-field ~MC-SCF! solution of the time-independent Schrödinger equation for nuclear motion ~i.e. vibrational modes!. This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum m...
متن کاملSolvation and Hydrogen-Bonding Effects on Proton Wires
In this paper, the multiconfigurational molecular dynamics with quantum transitions (MC-MDQT) method is used to simulate the nonequilibrium real-time quantum dynamics of proton transport along water chains in the presence of solvating water molecules. The model system consists of a protonated chain of three water molecules and two additional solvating water molecules hydrogen-bonded to each end...
متن کاملMolecular dynamics with quantum transitions for proton transfer: Quantum treatment of hydrogen and donor–acceptor motions
The mixed quantum/classical molecular dynamics with quantum transitions ~MDQT! method is extended to treat the donor–acceptor vibrational motion as well as the hydrogen motion quantum mechanically for proton transfer reactions. The quantum treatment of both the hydrogen and the donor–acceptor motions requires the calculation of two-dimensional vibrational wave functions. The MDQT surface hoppin...
متن کاملProton transport along water chains in an electric field
Proton transport along water chains is thought to be essential for the translocation of protons over large distances in proteins. In this paper the real-time nonequilibrium quantum dynamics of proton transport along chains of three or four water molecules is simulated using the multiconfigurational molecular dynamics with quantum transitions method. A linearly increasing external electric field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996