Applications of Procesi Bundles to Cherednik Algebras

نویسنده

  • IVAN LOSEV
چکیده

In this talk we describe some applications of Procesi bundles that appeared in Gufang’s talk to type A Rational Cherednik algebras introduced in Jose’s talk. We start by recalling Procesi bundles, quantum Hamiltonian reductions, and Cherednik algebras. Then we apply Procesi bundles to relating the spherical Rational Cherednik algebras to quantum Hamiltonian reductions. Finally, we study the deformed derived McKay equivalence (that will be a derived equivalence between the categories of modules over a quantum Hamiltonian reduction and over a Rational Cherednik algebra).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parking Functions and Vertex Operators

We introduce several associative algebras and series of vector spaces associated to these algebras. Using lattice vertex operators, we obtain dimension and character formulae for these spaces. In particular, we a series of representations of symmetric groups which turn out to be isomorphic to parking function modules. We also construct series of vector spaces whose dimensions are Catalan number...

متن کامل

Lowest-weight representations of Cherednik algebras in positive characteristic

Lowest-weight representations of Cherednik algebras H~,c have been studied in both characteristic 0 and positive characteristic. However, the case of positive characteristic has been studied less, because of a lack of general tools. In positive characteristic the lowest-weight representation Lc(τ) of the Cherednik algebra is finite-dimensional. The representation theory of complex reflection gr...

متن کامل

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

Endomorphisms of Verma Modules for Rational Cherednik Algebras

We study the endomorphism algebras of Verma modules for rational Cherednik algebras at t = 0. It is shown that, in many cases, these endomorphism algebras are quotients of the centre of the rational Cherednik algebra. Geometrically, they define Lagrangian subvarieties of the generalized Calogero–Moser space. In the introduction, we motivate our results by describing them in the context of deriv...

متن کامل

Incidence Combinatorics

We introduce notions of combinatorial blowups, building sets, and nested sets for arbitrary meet-semilattices. This gives a common abstract framework for the incidence combinatorics occurring in the context of De Concini-Procesi models of subspace arrangements and resolutions of singularities in toric varieties. Our main theorem states that a sequence of combinatorial blowups, prescribed by a b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014