A Penalized Likelihood Approach to Parameter Estimation with Integral Reliability Constraints

نویسندگان

  • Barry Smith
  • Steven Wang
  • Augustine Wong
  • Xiaofeng Zhou
چکیده

Stress-strength reliability problems arise frequently in applied statistics and related fields. Often they involve two independent and possibly small samples of measurements on strength and breakdown pressures (stress). The goal of the researcher is to use the measurements to obtain inference on reliability, which is the probability that stress will exceed strength. This paper addresses the case where reliability is expressed in terms of an integral which has no closed form solution and where the number of observed values on stress and strength is small. We find that the Lagrange approach to estimating constrained likelihood, necessary for inference, often performs poorly. We introduce a penalized likelihood method and it appears to always work well. We use third order likelihood methods to partially offset the issue of small samples. The proposed method is applied to draw inferences on reliability in stress-strength problems with independent exponentiated exponential distributions. Simulation studies are carried out to assess the accuracy of the proposed method and to compare it with some standard asymptotic methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Copula Density Estimation by Total Variation Penalized Likelihood with Linear Equality Constraints

A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on a maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-M...

متن کامل

Copula Density Estimation by Total Variation Penalized Likelihood

A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on a maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-M...

متن کامل

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

Failure Process Modeling with Censored Data in Accelerated Life Tests

Manufacturers need to evaluate the reliability of their products in order to increase the customer satisfaction. Proper analysis of reliability also requires an effective study of the failure process of a product, especially its failure time. So, the Failure Process Modeling (FPM) plays a key role in the reliability analysis of the system that has been less focused on. This paper introduces a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015