High-order curvilinear meshing using a thermo-elastic analogy

نویسندگان

  • David Moxey
  • D. Ekelschot
  • Ü. Keskin
  • Spencer J. Sherwin
  • Joaquim Peiró
چکیده

With high-order methods becoming increasingly popular in both academia and industry, generating curvilinear meshes that align with the boundaries of complex geometries continues to present a significant challenge. Whereas traditional low-order methods use planar-faced elements, high-order methods introduce curvature into elements thatmay, if added naively, cause the element to self-intersect. Over the last few years, several curvilinear mesh generation techniques have been designed to tackle this issue, utilizing mesh deformation to move the interior nodes of the mesh in order to accommodate curvature at the boundary. Many of these are based on elastic models, where themesh is treated as a solid body and deformed according to a linear or non-linear stress tensor. However, such methods typically have no explicit control over the validity of the elements in the resulting mesh. In this article, we present an extension of this elastic formulation, whereby a thermal stress term is introduced to ‘heat’ or ‘cool’ elements as they deform.We outline a proof-of-concept implementation and show that the adoption of a thermo-elastic analogy leads to an additional degree of robustness, by considering examples in both two and three dimensions. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Thermo-Elastic Diffusion Problem in a Functionally Graded Rotating Media Using Fractional Order Theory

A generalized thermo-elastic diffusion problem in a functionally graded isotropic, unbounded, rotating elastic medium due to a periodically varying heat source in the context of fractional order theory is considered in our present work. The governing equations of the theory for a functionally graded material with GNIII model are established. Analytical solution of the problem is derived in Lapl...

متن کامل

Non-Local Thermo-Elastic Buckling Analysis of Multi-Layer Annular/Circular Nano-Plates Based on First and Third Order Shear Deformation Theories Using DQ Method

In present study, thermo-elastic buckling analysis of multi-layer orthotropic annular/circular graphene sheets is investigated based on Eringen’s theory. The moderately thick and also thick nano-plates are considered. Using the non-local first and third order shear deformation theories, the governing equations are derived. The van der Waals interaction between the layers is simulated for multi-...

متن کامل

Bending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory

In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...

متن کامل

Curvilinear Triangular Discretization of Biomedical Images

Mesh generation is a useful tool for obtaining discrete descriptors of biological objects represented by images. The generation of meshes with straight sided elements has been fairly well understood. However, in order to match curved shapes that are ubiquitous in nature, meshes with high-order elements are required. Moreover, for the processing of large data sets, automatic meshing procedures a...

متن کامل

High order curvilinear finite elements for elastic-plastic Lagrangian dynamics

This paper presents a high-order finite element method for calculating elastic-plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1, 2]. In order to handle transition to plastic flow, we formulate the stress-strain relation in rate (or incremental) form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2016