Optimal Error Properties of Finite Element Methods for Second Order Elliptic Dirichlet Problems

نویسندگان

  • Arthur G. Werschulz
  • ARTHUR G. WERSCHULZ
چکیده

We use the informational approach of Traub and Wozniakowski [9] to study the variational form of the second order elliptic Dirichlet problem Lu = f on ü C RN. For /e Hr(Q), where r> -1, a quasi-uniform finite element method using n linear functional Jaf^i nas T7'(ß)-norm error 0(n~ N/2. We show that when N = 1, there is no method using n function evaluations whose error is better than ñ(n~r); thus for N = 1, the finite element method with quadrature is asymptotically optimal among all methods using n evaluations of /.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Analysis for a Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems

We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The functional theoretical setting of this problem uses L2 controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation,...

متن کامل

Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems

In this paper, we present a priori error analysis for the finite element discretization of elliptic optimal control problems, where a finite dimensional control variable enters the Dirichlet boundary conditions. The analysis of finite element approximations of optimization problems governed by partial differential equations is an area of active research, see, e.g., [1, 12, 17, 18]. The consider...

متن کامل

Convergence of Goal-oriented Adaptive Finite Element Methods for Nonsymmetric Problems

In this article we develop convergence theory for a class of goal-oriented adaptive finite element algorithms for second order nonsymmetric linear elliptic equations. In particular, we establish contraction and quasi-optimality results for a method of this type for second order Dirichlet problems involving the elliptic operator Lu = ∇ · (A∇u)− b · ∇u− cu, with A Lipschitz, almost-everywhere sym...

متن کامل

A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems

A stable mixed finite element method (MFEM) for the second order elliptic problems, in which the scheme just satisfies the discrete B.B condition, is discussed in this paper. The uniqueness and existence of solutions for the corresponding discrete problems are obtained, and the optimal O(h) order error estimates are derived.

متن کامل

Resolvent Estimates for Elliptic Finite Element Operators in One Dimension

We prove the analyticity (uniform in h ) of the semigroups generated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a onedimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010