A parallel bi-directional self-organizing neural network (PBDSONN) architecture for color image extraction and segmentation
نویسندگان
چکیده
The parallel self-organizing neural network (PSONN) architecture uses bilevel sigmoidal activation functions for the purpose of extraction of embedded objects from pure color noisy perspectives. The process of extraction often involves an enhancement of the images under consideration. The network employs multilevel sigmoidal activation function to segment true color images. Both these activation functions are characterized by fixed thresholding parameters, which do not incorporate the underlying heterogeneity in the image intensity gamut. Methods for incorporating dynamic thresholding mechanisms into the thresholding characteristics of the PSONN architecture are investigated in this paper. We also propose a parallel bi-directional self-organizing neural network (PBDSONN) architecture to address the limitations of the PSONN architecture. Three constituent BDSONNs in the proposed architecture process color component information by embedded adaptive fuzzy context sensitive thresholding (CONSENT) mechanisms. A source layer feeds the BDSONNs with input color component information. Another sink layer fuses the processed color component information into resultant outputs. Comparative results of the quality of the extracted/segmented images indicate the efficacy of the proposed PBDSONN architecture over the PSONN architecture with fixed as well as dynamic thresholding mechanisms. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
کاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملEfficient Color Image Segmentation by a Parallel Optimized (ParaOptiMUSIG) Activation Function
The optimized class responses from the image content has been applied to generate the optimized version of MUSIG (OptiMUSIG) activation function for a multilayer self organizing neural network architecture to effectively segment multilevel gray level intensity images. This chapter depicts the parallel version of the OptiMUSIG (ParaOptiMUSIG) activation function with the optimized class response...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملA New Type of ART2 Architecture and Application to Color Image Segmentation
A new neural network architecture based on adaptive resonance theory (ART) is proposed and applied to color image segmentation. A new mechanism of similarity measurement between patterns has been introduced to make sure that spatial information in feature space, including both magnitude and phase of input vector, has been taken into consideration. By these improvements, the new ART2 architectur...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 86 شماره
صفحات -
تاریخ انتشار 2012