Enumerative Formulae for Unrooted Planar Maps: a Pattern
نویسنده
چکیده
We present uniformly available simple enumerative formulae for unrooted planar n-edge maps (counted up to orientation-preserving isomorphism) of numerous classes including arbitrary, loopless, non-separable, eulerian maps and plane trees. All the formulae conform to a certain pattern with respect to the terms of the sum over t | n, t < n. Namely, these terms, which correspond to non-trivial automorphisms of the maps, prove to be of the form φ ( n t ) αrt (k t t ) , where φ(m) is the Euler function, k and r are integer constants and α is a constant or takes only two rational values. On the contrary, the main, “rooted” summand corresponding to t = n contains an additional factor which is a rational function of n. Two simple new enumerative results are deduced for bicolored eulerian maps. A collateral aim is to briefly survey recent and old results of unrooted planar map enumeration.
منابع مشابه
Enumeration of eulerian and unicursal planar maps
Sum-free enumerative formulae are derived for several classes of rooted planar maps with no vertices of odd valency (eulerian maps) and with two vertices of odd valency (unicursal maps). As corollaries we obtain simple formulae for the numbers of unrooted eulerian and unicursal planar maps. Also, we obtain a sum-free formula for the number of rooted bi-eulerian (eulerian and bipartite) maps and...
متن کاملEnumeration of unrooted odd-valent regular planar maps
We derive closed formulae for the numbers of rooted maps with a fixed number of vertices of the same odd degree except for the root vertex and one other exceptional vertex of degree 1. The same applies to the generating functions for these numbers. Similar results, but without the vertex of degree 1, were obtained by the first author and Rahman. We also show, by manipulating a recursion of Bout...
متن کاملEnumeration of self-dual planar maps
A planar map is an embedding of a connected planar graph in the sphere such that the surface is partitioned into simply connected regions; in other words, it is a finite cellular decomposition of the sphere into vertices, edges, and faces (0−, 1− and 2−cells, respectively). In particular, 3−connected planar maps correspond to polyhedra. Motivated by the Four Colour Problem, W. Tutte [4] launche...
متن کاملEnumerative Properties of Rooted Circuit Maps
In 1966 Barnette introduced a set of graphs, called circuit graphs, which are obtained from 3-connected planar graphs by deleting a vertex. Circuit graphs and 3-connected planar graphs share many interesting properties which are not satisfied by general 2-connected planar graphs. Circuit graphs have nice closure properties which make them easier to deal with than 3-connected planar graphs for s...
متن کاملCounting unrooted loopless planar maps
We present a formula for the number of n-edge unrooted loopless planar maps considered up to orientation-preserving isomorphism. The only sum contained in this formula is over the divisors of n. Résumé. Nous présentons une formule pour le nombre de cartes planaires sans boucles avec n arêtes, à isomorphisme près préservant l’orientation. La seule somme contenue dans cette formule est prise parm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 11 شماره
صفحات -
تاریخ انتشار 2004