Comparing the performance of quantum-inspired evolutionary algorithms for the solution of software requirements selection problem

نویسندگان

  • A. Charan Kumari
  • K. Srinivas
چکیده

Context: In requirements engineering phase of the software development life cycle, one of the main concerns of software engineers is to select a set of software requirements for implementation in the next release of the software from many requirements proposed by the customers, while balancing budget and customer satisfaction. Objective: To analyse the efficacy of Quantum-inspired Elitist Multi-objective Evolutionary Algorithm (QEMEA), Quantum-inspired Multi-objective Differential Evolution Algorithm (QMDEA) and Multi-objective Quantum-inspired Hybrid Differential Evolution (MQHDE) in solving the software requirements selection

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search-based Software Requirements Selection: A Case Study

This paper presents a Multi-objective Quantum-inspired Hybrid Differential Evolution (MQHDE) for the solution of software requirements selection problem and its application on a real-world project. As the customer requirements change from time to time, often software products are developed in an iterative or incremental manner so as to deal with these changing requirements. The problem is to id...

متن کامل

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

A Continuous Plane Model to Machine Layout Problems Considering Pick-Up and Drop-Off Points: An Evolutionary Algorithm

One of the well-known evolutionary algorithms inspired by biological evolution is genetic algorithm (GA) that is employed as a robust and global optimization tool to search for the best or near-optimal solution with the search space. In this paper, this algorithm is used to solve unequalsized machines (or intra-cell) layout problems considering pick-up and drop-off (input/output) points. Such p...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project

This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information & Software Technology

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2016