Exact Sampling and Counting for Fixed - Margin Matrices
نویسندگان
چکیده
The uniform distribution on matrices with specified row and column sums is often a natural choice of null model when testing for structure in two-way tables (binary or nonnegative integer). Due to the difficulty of sampling from this distribution, many approximate methods have been developed. We will show that by exploiting certain symmetries, exact sampling and counting is in fact possible in many nontrivial real-world cases. We illustrate with real datasets including ecological co-occurrence matrices and contingency tables.
منابع مشابه
Exact Enumeration and Sampling of Matrices with Specified Margins
We describe a dynamic programming algorithm for exact counting and exact uniform sampling of matrices with specified row and column sums. The algorithm runs in polynomial time when the column sums are bounded. Binary or non-negative integer matrices are handled. The method is distinguished by applicability to non-regular margins, tractability on large matrices, and the capacity for exact sampling.
متن کاملExact Radial Free Vibration Frequencies of Power-Law Graded Spheres
This study concentrates on the free pure radial vibrations of hollow spheres made of hypothetically functionally simple power rule graded materials having identical inhomogeneity indexes for both Young’s modulus and the density in an analytical manner. After offering the exact elements of the free vibration coefficient matrices for free-free, free-fixed, and fixed-fixed restraints, a parametric...
متن کاملCounting Matrices Over a Finite Field With All Eigenvalues in the Field
Given a finite field F and a positive integer n, we give a procedure to count the n×n matrices with entries in F with all eigenvalues in the field. We give an exact value for any field for values of n up to 4, and prove that for fixed n, as the size of the field increases, the proportion of matrices with all eigenvalues in the field approaches 1/n!. As a corollary, we show that for large fields...
متن کاملApplication of the exact operational matrices for solving the Emden-Fowler equations, arising in Astrophysics
The objective of this paper is applying the well-known exact operational matrices (EOMs) idea for solving the Emden-Fowler equations, illustrating the superiority of EOMs over ordinary operational matrices (OOMs). Up to now, a few studies have been conducted on EOMs ; but the solved differential equations did not have high-degree nonlinearity and the reported results could not strongly show the...
متن کاملA Constraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuits and Systems
The paper addresses the stability margin assessment for linear systems under interval parameter uncertainties. The original robust stability problem is initially transformed into an equivalent problem of estimating the eigenvalues ranges of matrices whose elements are non-linear functions of independent interval parameters. A new algorithm for finding the exact value of stability margin (within...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013