Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems
نویسندگان
چکیده
This paper concerns a numerical study of convergence properties of the boundary knot method (BKM) applied to the solution of 2D and 3D homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. The BKM is a new boundary-type, meshfree radial function basis collocation technique. The method differentiates from the method of fundamental solutions (MFS) in that it does not need the controversial artificial boundary outside physical domain due to the use of non-singular general solutions instead of the singular fundamental solutions. The BKM is also generally applicable to a variety of inhomogeneous problems [11,12,22] in conjunction with the dual reciprocity method (DRM). Therefore, when applied to inhomogeneous problems, the error of the DRM confounds the BKM accuracy in approximation of homogeneous solution, while the latter essentially distinguishes the BKM, MFS, and boundary element method. In order to avoid the interference of the DRM, this study focuses on the investigation of the convergence property of the BKM for homogeneous problems. The given numerical experiments reveal rapid convergence, high accuracy and efficiency, mathematical simplicity of the BKM.
منابع مشابه
An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملBoundary knot method for 2D and 3D Helmholtz and convection-diffusion problems with complicated geometry
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controve...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملBoundary knot method based on geodesic distance for anisotropic problems
The radial basis function (RBF) collocation techniques for the numerical solution of partial differential equation problems are increasingly popular in recent years thanks to their striking merits being inherently meshless, integration-free, and highly accurate. However, the RBF-based methods have markedly been limited to handle isotropic problems due to the use of the isotropic Euclidean dista...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002