SOX2 and OCT4 mRNA-Expressing Cells, Detected by Molecular Beacons, Localize to the Center of Neurospheres during Differentiation

نویسندگان

  • Mirolyuba Ilieva
  • Martin Dufva
چکیده

Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of pluripotent stem cell markers in mouse uterine tissue during estrous cycle

It was assumed that uterine stem cells are responsible for the unique regenerative capacity of uterine. Therefore, the aim of the present study was to investigate the expression of the pluripotent stem cell markers in the mice uterine tissue during different stages of estrous cycles. Twelve virgin female NMRI mice (6 to 8 weeks old) were considered at proestrus, estrus, metestrus and diestrus a...

متن کامل

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

متن کامل

Deregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance

Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...

متن کامل

Sorting Live Stem Cells Based on Sox2 mRNA Expression

While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular...

متن کامل

مطالعه تاثیر بیش بیان ژن OCT4 و مهار همزمان ژن P53 بر بیان ژن‌های پرتوانی در سلول‌های بنیادی بافت چربی انسان

Background and Objective: OCT4 is the most important transcription factor for reprogramming of somatic cells and maintenance of pluripotency. Moreover, it has recently been shown that loss of P53 or its mutations improve the efficiency of reprogramming. This study was designed to reprogram human adipose tissue-derived stem cells (ADSCs) by overexpression of OCT4 and inhibition of P53 expression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013