Bayesian Kernel Methods
نویسندگان
چکیده
Bayesian methods allow for a simple and intuitive representation of the function spaces used by kernel methods. This chapter describes the basic principles of Gaussian Processes, their implementation and their connection to other kernel-based Bayesian estimation methods, such as the Relevance Vector Machine.
منابع مشابه
Posterior Consistency of the Silverman g-prior in Bayesian Model Choice
Kernel supervised learning methods can be unified by utilizing the tools from regularization theory. The duality between regularization and prior leads to interpreting regularization methods in terms of maximum a posteriori estimation and has motivated Bayesian interpretations of kernel methods. In this paper we pursue a Bayesian interpretation of sparsity in the kernel setting by making use of...
متن کاملNonparametric Bayesian Kernel Models
Kernel models for classification and regression have emerged as widely applied tools in statistics and machine learning. We discuss a Bayesian framework and theory for kernel methods, providing a new rationalization of kernel regression based on nonparametric Bayesian models. Functional analytic results ensure that such a nonparametric prior specification induces a class of functions that span ...
متن کاملImpact of Patients’ Gender on Parkinson’s disease using Classification Algorithms
In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...
متن کاملNon-parametric Bayesian Kernel Models
1 SUMMARY Kernel models for classification and regression have emerged as widely applied tools in statistics and machine learning. We discuss a Bayesian framework and theory for kernel methods, providing a new rationalisation of kernel regression based on non-parametric Bayesian models. Functional analytic results ensure that such a non-parametric prior specification induces a class of function...
متن کاملSparse Bayesian kernel logistic regression
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based MacKay’s evidence approximation. The model is re-parameterised such that an isotropic Gaussian prior over parameters in the kernel induced feature space is replaced by an isotropic Gaussian prior over the transformed parameters, facilitating a Bayesian analysis using stan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002