Buckling Transitions and Clock Order of Two-Dimensional Coulomb Crystals
نویسندگان
چکیده
Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multilayer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line shape provides a direct measurement of the temperature-dependent exponent ηðTÞ characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: Here, the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this work highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.
منابع مشابه
Magnetic-charge ordering and phase transitions in monopole-conserved square spin ice
Magnetic-charge ordering and corresponding magnetic/monopole phase transitions in spin ices are the emergent topics of condensed matter physics. In this work, we investigate a series of magnetic-charge (monopole) phase transitions in artificial square spin ice model using the conserved monopole density algorithm. It is revealed that the dynamics of low monopole density lattices is controlled by...
متن کاملTricriticality for dimeric Coulomb molecular crystals in ground state
We study the ground-state properties of a system of dimers. Each dimer consists in a pair of equivalent charges at a fixed distance, immersed in a neutralizing homogeneous background. All charges interact pairwisely by Coulomb potential. The dimer centers form a two-dimensional rectangular lattice with the aspect ratio α ∈ [0, 1] and each dimer is allowed to rotate around its center. The previo...
متن کاملExploring structural phase transitions of ion crystals
Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled (40)Ca(+) ion crystals in a home-built surface-electrode trap, where besides the usually menti...
متن کاملSurfactant-mediated two-dimensional crystallization of colloidal crystals
Colloidal particles can form unexpected two-dimensional ordered colloidal crystals when they interact with surfactants of the opposite charge. Coulomb interactions lead to self-limited adsorption of the particles on the surface of vesicles formed by the surfactants. The adsorbed particles form ordered but fluid rafts on the vesicle surfaces, and these ultimately form robust two-dimensional crys...
متن کاملA Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice
In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016