Localization of ADP-ribosylation factor domain protein 1 (ARD1) in lysosomes and Golgi apparatus.
نویسندگان
چکیده
ADP-ribosylation factor domain protein 1 (ARD1) is a member of the ADP ribosylation factor (ARF) family of guanine nucleotide-binding proteins that differs from other ARFs by the presence of a 46-kDa amino-terminal extension which acts as a GTPase-activating protein (GAP) for its ARF domain. Similar to ARF GAPs, the GAP domain of ARD1 contains a zinc finger motif and arginine residues that are critical for activity. It differs from other ARF GAPs in its covalent association with the GTP-binding domain and its specificity for the ARF domain of ARD1. ARFs are presumed to play a key role in the formation of intracellular transport vesicles and in their movement from one compartment to another. We report here that ARD1 overexpressed in cells, as a fusion or nonfusion protein, is localized in vesicular structures that are concentrated mainly in the perinuclear region, but are found also throughout the cytosol. Microscopic colocalization and subcellular fractionation studies showed that ARD1 was associated with the Golgi complex and lysosomal structures. ARD1 expressed as a green fluorescent fusion protein was initially associated with the Golgi network and subsequently localized to lysosomes. Lysosomal and Golgi membranes isolated from human liver by immunoaffinity contained native ARD1. Localization to these organelles, therefore, did not appear to be a result of overexpression. These observations suggest that the ARF-related protein ARD1 may play a role in the formation or function of lysosomes and in protein trafficking between Golgi and lysosomes.
منابع مشابه
Identification of lysosomal and Golgi localization signals in GAP and ARF domains of ARF domain protein 1.
ADP ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin and phospholipase D and are critical components of vesicular trafficking pathways. ARF domain protein 1 (ARD1), a member of the ARF superfamily, contains a 46-kDa amino-terminal extension, which acts as a GTPase-activating protein (GAP) with activity towards its ARF domain. W...
متن کاملSpecific functional interaction of human cytohesin-1 and ADP-ribosylation factor domain protein (ARD1).
Activation of ADP-ribosylation factors (ARFs) is mediated by guanine nucleotide-exchange proteins, which accelerate conversion of inactive ARF-GDP to active ARF-GTP. ARF domain protein (ARD1), a 64-kDa GTPase with a C-terminal ADP-ribosylation factor domain, is localized to lysosomes and the Golgi apparatus. When ARD1 was used as bait to screen a human liver cDNA library using the yeast two-hyb...
متن کاملN-terminal targeting of guanine nucleotide exchange factors (GEF) for ADP ribosylation factors (ARF) to the Golgi.
B2-1 (cytohesin-1) is a member of a group of proteins (including ARNO and ARNO3) that are all of similar size and domain composition. The three proteins contain an N-terminal coiled-coil domain, followed by a Sec7 and a pleckstrin homology (PH) domain. While it is well established that the Sec7 domain functions as a guanine nucleotide exchange factor (GEF) for ADP-ribosylation factors (ARFs) an...
متن کاملRegulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.
ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis...
متن کاملp24A, a type I transmembrane protein, controls ARF1-dependent resensitization of protease-activated receptor-2 by influence on receptor trafficking.
Protease-activated receptor-2 (PAR-2), the second member of the G protein-coupled PAR family, is irreversibly activated by trypsin or tryptase and then targeted to lysosomes for degradation. Intracellular presynthesized receptors stored at the Golgi apparatus repopulate the cell surface after trypsin stimulation, thereby leading to rapid resensitization to trypsin signaling. However, the molecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 15 شماره
صفحات -
تاریخ انتشار 1998