Clustering-based Method for Positive and Unlabeled Text Categorization Enhanced by Improved TFIDF
نویسندگان
چکیده
PU learning occurs frequently in Web pages classification and text retrieval applications because users may be interested in information on the same topic. Collecting reliable negative examples is a key step in PU (Positive and Unlabeled) text classification, which solves a key problem in machine learning when no labeled negative examples are available in the training set or negative examples are difficult to collect. Thus, this paper presents a novel clustering-based method for collecting reliable negative examples (CCRNE). Different from traditional methods, we remove as many probable positive examples from unlabeled set as possible, which results that more reliable negative examples are found out. During the process of building classifier, a novel TFIDF-improved feature weighting approach, which reflects the importance of the term in the positive and negative training examples respectively, is presented to describe documents in the Vector Space Model. We also build a weighted voting classifier by iteratively applying the SVM algorithm and implement OCS (One-class SVM), PEBL (Positive Example Based Learning) and 1-DNFII (Constrained 1-DNF) methods used for comparison. Experimental results on three real-world datasets (Reuters Corpus Volume 1 (RCV1), Reuters-21578 and 20 Newsgroups) show that our proposed C-CRNE extracts more reliable negative examples than the baseline algorithms with very low error rates. And our classifier outperforms other state-of-art classification methods from the perspective of traditional performance metrics.
منابع مشابه
Arabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملBig Data Categorization for Arabic Text Using Latent Semantic Indexing and Clustering
Documents categorization is an important field in the area of natural language processing. In this paper, we propose using Latent Semantic Indexing (LSI), singular value decomposing (SVD) method, and clustering techniques to group similar unlabeled document into pre-specified number of topics. The generated groups are then categorized using a suitable label. For clustering, we used Expectation–...
متن کاملBeyond TFIDF Weighting for Text Categorization in the Vector Space Model
KNN and SVM are two machine learning approaches to Text Categorization (TC) based on the Vector Space Model. In this model, borrowed from Information Retrieval, documents are represented as a vector where each component is associated with a particular word from the vocabulary. Traditionally, each component value is assigned using the information retrieval TFIDF measure. While this weighting met...
متن کاملAutomatic Food Categorization from Large Unlabeled Corpora and Its Impact on Relation Extraction
We present a weakly-supervised induction method to assign semantic information to food items. We consider two tasks of categorizations being food-type classification and the distinction of whether a food item is composite or not. The categorizations are induced by a graph-based algorithm applied on a large unlabeled domain-specific corpus. We show that the usage of a domain-specific corpus is v...
متن کاملSemi-supervised Text Categorization Using Recursive K-means Clustering
In this paper, we present a semi-supervised learning algorithm for classification of text documents. A method of labeling unlabeled text documents is presented. The presented method is based on the principle of divide and conquer strategy. It uses recursive K-means algorithm for partitioning both labeled and unlabeled data collection. The K-means algorithm is applied recursively on each partiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 30 شماره
صفحات -
تاریخ انتشار 2014